UID:
almafu_9960073709002883
Format:
1 online resource (528 p.)
Edition:
1st ed.
ISBN:
0-12-801177-7
,
0-12-800950-0
Content:
Handbook of Materials Failure Analysis: With Case Studies from the Aerospace and Automotive Industries provides a thorough understanding of the reasons materials fail in certain situations, covering important scenarios, including material defects, mechanical failure as a result of improper design, corrosion, surface fracture, and other environmental causes. The book begins with a general overview of materials failure analysis and its importance, and then logically proceeds from a discussion of the failure analysis process, types of failure analysis, and specific tools and techniques, to c
Note:
Description based upon print version of record.
,
Front Cover; Handbook of Materials Failure Analysis With Case Studies from the Aerospace and Automotive Industries; Copyright; Contents; Contributors; Preface; Part 1: Failure analysis in aircraft and aerospace structures; Chapter 1: Strategies for static failure analysis on aerospace structures; 1. Introduction; 2. Delamination Growth in Composites; 2.1. VCCT Fundamentals; 2.2. Experimental Benchmark and FEM Simulation; 2.3. FEMs Comparison; 2.4. Delamination Growth Tool; 2.5. Correlation Between FEM Simulations and Tests; 2.6. Mesh Size Effects
,
2.7. Comparison of Mixed-Mode Failure Criteria2.8. Conclusion and Further Work in Delamination Growth Analysis; 3. Debonding Onset and Growth; 3.1. DCB Coupon: Mode I Interlaminar Fracture Toughness Test; 3.2. FE Modeling; 3.3. CZ Fundamentals; 3.4. Mesh Dependency; 3.5. Experimental Results; 3.6. Correlation FEM Simulation-Tests; 3.7. Conclusion and Future Work in Debonding Analysis; 4. Crack Growth in Metallic Structures; 4.1. CTOA Criterion-Experimental Obtaining of CTOAC; 4.2. Crack Growth Tool; 4.3. Benchmarks Description; 4.4. FEM Modeling; 4.5. Correlation Simulations-Tests
,
4.6. Crack Growth in Metallic Structures-Conclusion and Future WorkReferences; Chapter 2: Strategies for dynamic failure analysis on aerospace structures; 1. Introduction; 2. Land Incidents; Low-Velocity Impacts; 2.1. FEM Modeling and Analysis; 2.2. Conclusion and Recommendations; 3. Land Incidents; Frangibility of Airport Structures; 3.1. Design to be Analyzed; 3.2. Numerical Analysis Tool Used in Impact Problems; 3.3. Model Correlation with Lateral Loading Test; 3.4. Mechanical Properties and Failure Criterion Validation; 3.5. Frangibility Simulation Results; 4. Flight Incidents
,
Blade Loss of a Transport Aircraft4.1. Blade-Loss Phenomenon; 4.2. Description of the Models; 4.3. FEM Model and Simplified Model; 4.4. Analysis Considerations, Implicit and Explicit Method, Time Step; 4.5. Loads and Boundary Conditions; 4.6. Load Cases Analyzed; 4.7. Results; 4.8. Conclusion; 5. Conclusion; Acknowledgments; References; Chapter 3: The evolution of failure analysis at NASAs Kennedy Space Center and lessons learned; 1. Introduction; 2. Long-Duration Space Operations; 2.1. Skylab; 2.2. International Space Station; 3. Failure in LEO: The Solar Alpha Rotary Joint
,
3.1. STS-117 Mission Overview3.2. SARJ Hardware Overview; 3.3. STS-117 Mission Details; 4. The Problem; 4.1. Troubleshooting During the STS-120 Mission; 4.2. Initial KSC SARJ Investigation; 4.3. NASA SARJ Investigation; 4.4. Expedition 16 Sample Analysis; 4.5. Postanalysis On-orbit Inspection; 4.6. The Repair on STS-126, November 2008; 4.7. What About the Port-SARJ?; 5. Conclusion; References; Chapter 4: Fleet impact resulting from a space shuttle Columbia main engine controller wire failure during Mission STS-93; 1. Space Shuttle Columbia Wiring Hardware Overview; 2. Investigation
,
3. Conclusion
Language:
English
Keywords:
Electronic books.