Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    UID:
    almafu_9961294355202883
    Format: 1 online resource (xii, 444 pages) : , digital, PDF file(s).
    Edition: Third edition.
    ISBN: 1-316-16931-6 , 0-511-80131-9
    Content: Written by two prominent figures in radio astronomy, this well-established, graduate-level textbook is a thorough introduction to radio telescopes and techniques. It is an invaluable overview for students and researchers turning to radio astronomy for the first time. The first half of the book describes how radio telescopes work - from basic antennas and single aperture dishes through to full aperture-synthesis arrays. It includes reference material on the fundamentals of astrophysics and observing techniques. The second half of the book reviews radio observations of our galaxy, stars, pulsars, radio galaxies, quasars, and the cosmic microwave background. This third edition describes the applications of fundamental techniques to newly developing radio telescopes, including ATA, LOFAR, MWA, SKA, and ALMA, which all require an understanding of aspects specific to radio astronomy. Two entirely new chapters now cover cosmology, from the fundamental concepts to the most recent results of WMAP.
    Note: Title from publisher's bibliographic system (viewed on 29 May 2018). , Cover -- AN INTRODUCTION TO RADIO ASTRONOMY -- Title -- Copyright -- Contents -- Preface -- 1 Introduction -- 1.1 The role of radio observations in astronomy -- 1.2 Thermal and non-thermal processes -- 1.3 Radiation processes and radio observations -- 2 The nature of the radio signal -- 2.1 Flux density: the jansky -- 2.2 Antenna temperature -- 2.3 Electromagnetic waves -- 2.4 Wave polarization -- 2.5 Stokes parameters -- 2.6 Radio polarimetry in practice -- Further reading -- 3 Signals, noise, radiometers and spectrometers -- 3.1 Gaussian random noise -- 3.2 Band-limited noise -- 3.3 Detection and integration -- 3.4 Radiometer principles -- 3.5 Low-noise amplifiers and mixers -- 3.6 Radiometers in practice -- 3.7 Digital techniques -- 3.8 Spectrometry -- 3.9 Cross-correlation radiometry: interferometry -- Further reading -- 4 Single-aperture radio telescopes -- 4.1 Fundamentals: dipoles and horns -- 4.1.1 The horn antenna -- 4.2 Arrays of radiating elements -- 4.2.1 Earth planes -- 4.2.2 Phased arrays -- 4.3 Frequency-independent antennas -- 4.4 Aperture distributions and beam patterns -- 4.5 Partially steerable telescopes -- 4.6 Steerable telescopes -- 4.7 Feed systems -- 4.8 Focal-plane arrays -- 4.9 Surface accuracy and efficiency -- 4.10 Radio telescopes today -- 4.11 Smoothing the response to a sky brightness distribution -- Further reading -- 5 The two-element interferometer -- 5.1 The basic two-element interferometer -- 5.2 Interferometers with finite bandwidth -- 5.3 Interferometers and finite source size -- 5.4 Fourier transforms and the u-, v-plane -- 5.5 Practical considerations -- 5.6 Very-long-baseline interferometry (VLBI) -- 5.7 Beam switching -- 5.8 The interferometer in geodesy and astrometry -- 5.9 Interferometry at millimetre wavelengths -- 5.10 Optical interferometry -- Further reading -- 6 Aperture synthesis. , 6.1 Interferometer arrays -- 6.2 Cross-power products in an array -- 6.2.1 The spectral sensitivity function -- 6.2.2 Coverage of the u, v-plane by arrays -- 6.3 Calibration -- 6.4 Reducing the data -- 6.5 Producing a map -- 6.6 Self-calibration -- 6.7 Frequency diversity -- 6.8 Wide fields and wide bandwidths -- 6.9 Wide fields: mosaicing -- 6.10 Signal-to-noise limitations and dynamic range -- 6.11 VLBI arrays -- 6.12 Space VLBI -- 6.13 Aperture synthesis at millimetre wavelengths -- Further reading -- 7 Radiation, propagation and absorption of radio waves -- 7.1 Radiative transfer -- 7.2 Synchrotron radiation -- 7.3 A power-law energy distribution -- 7.4 Synchrotron self-absorption -- 7.5 Free-free radiation -- 7.6 Radio spectral lines -- 7.7 Masers -- 7.8 Propagation through ionized gas -- 7.9 Faraday rotation -- 7.10 Scintillation -- 7.11 Propagation in the Earth's atmosphere -- Further reading -- 8 The local Universe -- 8.1 Stars and galaxies -- 8.2 Aspects of the Milky Way -- 8.3 Measurement of sky brightness temperature -- 8.4 The spectrum of the Galactic continuum -- 8.5 Synchrotron radiation: emissivity -- 8.6 The energy spectrum of cosmic rays -- 8.7 Polarization -- 8.8 Faraday rotation: the Galactic magnetic field -- 8.9 Loops and spurs -- 8.10 The Local Bubble -- 8.11 Other galaxies -- Further reading -- 9 The interstellar medium -- 9.1 Atoms and molecules -- 9.2 Kinetic, radiation and state temperatures -- 9.3 The 21-cm spectral line of neutral hydrogen -- 9.4 H II regions and supernova remnants -- 9.5 Heating and cooling mechanisms -- 9.6 Dense molecular clouds -- 9.7 Interstellar scintillation -- 9.8 Supernova remnants (SNRs) -- Further reading -- 10 Galactic dynamics -- 10.1 The circular approximation -- 10.2 Spiral structure -- 10.3 Non-circular motions -- 10.4 The Galactic centre -- 10.5 The scale of the Galaxy. , 10.6 Atoms and molecules in other galaxies -- Further reading -- 11 Stars -- 11.1 Surface brightness -- 11.2 The Sun -- 11.3 The planets -- 11.4 Circumstellar envelopes -- 11.5 Circumstellar masers -- 11.6 The silicon oxide masers -- 11.7 The water masers -- 11.8 The hydroxyl masers -- 11.9 Classical novae -- 11.10 Recurrent novae -- 11.11 Non-thermal radiation from binaries and flare stars -- 11.12 X-ray binaries - Cyg X-3 and SS 433 -- 11.13 Superluminal motion -- Further reading -- 12 Pulsars -- 12.1 Neutron-star structure -- 12.2 Rotational slowdown -- 12.3 Rotational behaviour of the Crab and Vela pulsars -- 12.4 Glitches in rotation rate -- 12.5 Superfluid rotation -- 12.6 Radio and optical emission from pulsars -- 12.7 The radiation mechanism and refraction -- 12.8 The population and evolution of pulsars -- 12.9 Searches and surveys -- the constraints -- 12.10 Trigonometric distance and proper motion -- 12.11 X-ray pulsars -- 12.12 Binary radio pulsars -- 12.13 Magnetic dipole moments -- 12.14 Velocities -- 12.15 Binary orbits and interactions -- 12.16 Tests of general relativity -- Further reading -- 13 Radio galaxies and quasars -- 13.1 Radio emission from normal galaxies -- 13.2 Spectra and dimensions -- 13.3 Structures -- 13.4 A simple model of active galactic nuclei -- 13.5 The accretion disc -- 13.6 The torus -- 13.7 The core and the jets -- 13.8 Spectra of quasars and other AGNs -- 13.9 The radio brightness temperature of the core -- 13.10 Superluminal motion -- 13.11 The radio jets and lobes -- 13.12 The kiloparsec-scale radio sources -- 13.13 Repeating and quiescent quasars -- Further reading -- 14 Cosmology fundamentals -- 14.1 Cosmology transformed -- 14.2 Observing the CMB -- 14.2.1 The CMB temperature -- 14.2.2 COBE: the cosmic microwave background -- 14.3 Relativistic cosmology -- 14.4 Connecting GR cosmology with observations. , 14.4.1 The Einstein-de Sitter universe -- 14.4.2 The density parameters -- 14.4.3 Distances and angular diameters -- 14.5 The early Universe -- 14.6 Isotropy, curvature and inflation -- Further reading -- 15 The angular structure of the CMB -- 15.1 The coordinate frame of the Universe -- 15.2 COBE and WMAP: the Wilkinson Microwave Anisotropy Mission -- 15.3 Baryons and cold dark matter -- 15.4 The geometry of the acoustic oscillations -- 15.5 Physics of the acoustic oscillations -- 15.6 Deriving the cosmological parameters -- Further reading -- 16 Cosmology: discrete radio sources and gravitational lensing -- 16.1 Evolution and the radio-source counts -- 16.2 Angular diameter and expansion velocity -- 16.3 Gravitational lensing -- 16.3.1 Imaging by extended lenses -- 16.4 Observations of lenses: rings, quads and others -- 16.5 Time delay -- 16.6 Weak gravitational imaging -- 16.7 Microlensing -- Further reading -- 17 The future of radio astronomy -- 17.1 The Cosmic Century -- 17.2 The cosmic microwave background -- 17.3 The interstellar medium -- 17.4 Angular resolution: stars and quasars -- 17.5 Optical and infrared interferometry -- 17.6 New large radio telescopes -- 17.6.1 LOFAR and MWA -- 17.6.2 The Giant Metrewave Radio Telescope (GMRT) -- 17.6.3 The Atacama Large Millimeter Array (ALMA) -- 17.6.4 The Square Kilometer Array (SKA) -- 17.7 The protection of radio frequencies in astronomy -- Further reading -- Appendix 1 Fourier transforms -- A1.1 Definitions -- A1.2 Convolution and cross-correlation -- A1.3 Two or more dimensions -- Further reading -- Appendix 2 Celestial coordinates, distance and time -- A2.1 The celestial coordinate system -- A2.2 The astronomical distance scale -- A2.3 Time -- Further reading -- Appendix 3 The origins of radio astronomy -- Further reading -- Appendix 4 Calibrating polarimeters. , A4.1 Single-dish radio telescopes -- A4.2 Polarization in interferometers -- References -- Index.
    Additional Edition: ISBN 1-107-67260-0
    Additional Edition: ISBN 0-521-87808-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages