Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge, Massachusetts ; : Woodhead Publishing,
    UID:
    almahu_9949328459002882
    Format: 1 online resource (546 pages)
    ISBN: 0-323-85472-9
    Series Statement: Woodhead Publishing Series in Electronic and Optical Materials
    Content: "Radiation Dosimetry Phosphors provides an overview of the synthesis, properties and applications of materials used for radiation dosimetry and reviews the most appropriate phosphor materials for each radiation dosimetry technique. The book describes the available phosphors used commercially for their applications in the medical field for dose measurements. Although radiation dosimetry phosphors are commercially available, continuous efforts have been made by the worldwide research community to develop new materials or improve already existing materials used in different areas with low or high levels of radiation. Moreover, researchers are still working on developing dosimetric phosphors for OSL, ML, LL and RPL dosimetry."--
    Note: Front cover -- Half title -- Title -- Copyright -- Contents -- Contributors -- Chapter 1 Introduction to luminescence and radiation dosimetry techniques -- 1.1 Introduction to luminescence -- 1.1.1 Fluorescence and phosphorescence -- 1.2 Mechanism of luminescence -- 1.3 Types of luminescence -- 1.3.1 Bioluminescence -- 1.3.2 Chemiluminescence -- 1.3.3 Electroluminescence -- 1.3.4 Cathodoluminescence -- 1.3.5 Mechanoluminescence -- 1.3.6 Radioluminescence -- 1.3.7 Thermoluminescence -- 1.3.8 Photoluminescence -- 1.3.9 Ionoluminescence -- 1.3.10 Lyoluminescence -- 1.3.11 Optically stimulated luminescence -- 1.4 Introduction to radiation dosimetry -- 1.5 Radiation dosimetry techniques -- 1.5.1 Ionization chamber dosimetry -- 1.5.2 Film dosimetry -- 1.5.3 Luminescence dosimetry -- 1.5.4 Semiconductor dosimetry -- 1.5.5 Chemical dosimetry -- 1.5.6 Gel dosimetry -- Conclusion -- References -- Chapter 2 Principle, mechanism, and models of radiation dosimetry -- 2.1 Introduction -- 2.2 Type of radiation fields -- 2.2.1 Alpha radiation -- 2.2.2 Beta radiation -- 2.2.3 Gamma radiation -- 2.2.4 X-rays -- 2.2.5 Neutron radiation -- 2.3 Basics of radiation dosimetry -- 2.3.1 Definition of dosimetric quantities -- 2.3.2 Units of dosimetric quantities -- 2.4 Interaction of radiation with matter -- 2.4.1 Electrons -- 2.4.2 Neutrons -- 2.4.3 Heavy charged particles -- 2.5 Thermoluminescence, its mechanism, and models -- 2.5.1 Simple model -- 2.6 Advancements in radiation dosimetry -- Conclusion -- References -- Chapter 3 A scrutiny of phosphors for TL radiation dosimetry -- 3.1 Introduction -- 3.2 Thermoluminescence dosimetry -- 3.3 Characteristics of thermoluminescence dosimeter -- 3.3.1 Linearity/linear dose-response -- 3.3.2 Sensitivity -- 3.3.3 Fading -- 3.3.4 Accuracy -- 3.3.5 Precision -- 3.3.6 Dose rate dependence. , 3.3.7 Spatial resolution and physical size -- 3.3.8 Readout convenience -- 3.3.9 Convenience of use -- 3.3.10 Energy dependence -- 3.3.11 Directional dependence -- 3.4 Commercially available dosimeters and need for new phosphors -- 3.5 Review of synthesized phosphors -- 3.5.1 Borates -- 3.5.2 Aluminates -- 3.5.3 Phosphates -- 3.5.4 Sulfates -- 3.6 Challenges in synthesizing phosphors -- Conclusion -- References -- Chapter 4 Exploration of commercially available phosphors for thermoluminescence dosimetry -- 4.1 Introduction -- 4.2 Commercial thermoluminescence dosimeters (TLDs) -- 4.3 Practical applications of available dosimeters -- 4.3.1 Environmental dosimetry -- 4.3.2 Personnel dosimetry -- 4.3.3 Medical applications of TL dosimetry -- 4.3.4 High-dose dosimetry -- 4.3.5 Neutron dosimetry -- 4.3.6 Space dosimetry -- 4.3.7 Archaeological dating -- 4.4 Exploration of commercially available phosphors -- 4.4.1 LiF:Mg Ti and LiF: Mg Cu, P -- 4.4.2 Li2B4O7:Mn -- 4.4.3 Al2O3:C -- 4.4.4 CaSO4:Dy/Mn -- 4.4.5 CaF2:Dy/Tm/Mn -- 4.5 Future trends -- Concluding remarks -- Acknowledgment -- References -- Chapter 5 Understanding OSL radiation dosimetry and its application -- 5.1 Understanding radiation -- 5.2 Types and sources of radiation -- 5.2.1 Non-ionizing radiation -- 5.2.2 Ionizing radiation -- 5.2.3 Radiation dosimetry -- 5.2.4 Need for radiation dosimetry -- 5.3 Basic units of measurements -- 5.3.1 Exposure -- 5.3.2 Absorbed dose -- 5.3.3 Dose equivalent -- 5.3.4 Integral dose -- 5.3.5 Dose rate -- 5.3.6 Effective dose -- 5.4 International commission on radiological protection -- 5.5 Kinetic energy released per unit mass -- 5.6 Dosimetry systems -- 5.7 Luminescence techniques in radiation dosimetry -- 5.8 Optically stimulated luminescence -- 5.8.1 Definition -- 5.8.2 Historical background. , 5.9 Different readout modes for optically stimulated luminescence -- 5.9.1 Basic phenomenon of optically stimulated luminescence -- 5.9.2 Generalized mathematical description of optically stimulated luminescence -- 5.9.3 Photoionization cross-section -- 5.10 Advantages of optically stimulated luminescence over thermoluminescent -- 5.10.1 Applications of optically stimulated luminescence dosimetry -- 5.10.2 Personnel dosimetry -- 5.10.3 Environmental dosimetry -- 5.10.4 Medical dosimetry -- 5.10.5 Retrospective dosimetry -- 5.11 High dose -- 5.12 Requirements of good optically stimulated luminescence materials [84] -- Conclusion -- References -- Chapter 6 Theory and practice of the methods used to evaluate the physical parameters of electron trapping levels* -- 6.1 Introduction -- 6.2 Historical overview of peak shape methods -- 6.3 Initial rise (IR) method -- 6.3.1 Theory -- 6.3.2 Influence of thermal quenching -- 6.3.3 Influence of background -- 6.4 Various heating rate methods (VHR) -- 6.4.1 Theory -- 6.4.2 Influence of dose -- 6.4.3 Influence of thermal quenching -- 6.4.4 Influence of temperature lag -- 6.5 Isothermal decay methods -- 6.5.1 Theory -- 6.5.2 Analytical expressions -- 6.5.3 Residual isothermal decay method (RID) -- 6.5.4 Prompt isothermal decay method (PID) -- 6.6 Peak shape method (PSM) -- 6.6.1 Theory -- 6.6.2 Generalized derivation methodology for Chen's PSM-general order kinetics case -- 6.6.3 Expressions for generalized Chen's PSM -- 6.6.4 Applications of the generalized Chen's PSM to experimental TL peaks -- 6.6.5 Application of generalized Chen PSM to numerically generated TL peaks -- Acknowledgments -- References -- Chapter 7 Analysis of complex stimulated luminescence (SL) curves using analytical solutions of the one trap one recombination (OTOR) center model* -- 7.1 Introduction -- 7.2 Derivation of the master equation. , 7.2.1 The thermal or optical stimulation stage -- 7.2.2 and the stimulated luminescence modes -- 7.2.3 Analytical solution of the OTOR model -- 7.2.4 On the Lambert -function -- 7.3 The exponential integral in the master equations -- 7.3.1 Elementary function methods -- 7.3.2 Approximations method -- 7.4 Summary of master equation -- 7.5 Analytical expressions in research and applications: analysis of complex experimental curves -- 7.6 Bringing analytical expressions closer to experimental data: the transformed master equations -- 7.7 Transforming the first master equation -- 7.7.1 Condition of maximum intensity for TL signals in the GOT/OTOR model -- 7.7.2 Transformed first master equation for TL: case , -- 7.7.3 Transformed first master equation for TL: case or -- 7.7.4 Condition of maximum intensity for LM-OSL signals in the GOT/OTOR model -- 7.7.5 Transformed first master equation for LM-OSL: case , -- 7.8 Using the first master equation to fit experimental data -- 7.8.1 Peak shaped curves -- 7.9 Conditions required for application of the GCD analysis-the superposition principle -- 7.9.1 The effect of competition on the applicability of the SP-applicability of the quasi-superposition principle (QSP) -- 7.9.2 Detecting the existence of SP in experimental curves -- 7.10 Conclusions -- Acknowledgments -- References -- Chapter 8 Low Zeff phosphors for radiation dosimetry -- 8.1 Introduction -- 8.2 Requirements of low Zeff phosphors -- 8.3 Low Zeff thermoluminescence dosimeters -- 8.3.1 Materials based on LiF -- 8.3.2 Materials based on Li2B4O7 -- 8.3.3 Materials based on MgB4O7 -- 8.3.4 Materials based on BeO -- 8.3.5 Other low Z materials -- 8.4 Practical applications -- 8.4.1 Environmental dosimetry -- 8.4.2 Retrospective dosimetry -- 8.4.3 Medical applications -- 8.4.4 Space dosimetry -- 8.5 Challenges of low Zeff phosphors -- Conclusion. , References -- Chapter 9 Thermoluminescent materials for high-energy dosimetry -- 9.1 Introduction -- 9.2 Interaction of charged particle radiation with matter -- 9.3 Need for high energy dosimeters -- 9.4 Review of existing high energy dosimeters -- 9.4.1 CaSO4:Dy (TLD-900) -- 9.4.2 Al2O3:C (TLD-500) -- 9.4.3 LiF:Mg,Ti (TLD-100) -- 9.4.4 6LiF:Mg,Ti (TLD-600) -- 9.4.5 7LiF:Mg,Ti (TLD-700) -- 9.4.6 CaF2: Dy (TLD-200) -- 9.5 Applications of high energy dosimeters -- 9.6 Gaps in existing materials & -- need for new phosphors -- 9.7 Ongoing research for high energy dosimeters -- 9.8 Future prospects in high energy dosimetry -- Conclusions -- References -- Chapter 10 Nanophosphors for radiation dosimetry -- 10.1 Importance of nanophosphors -- 10.2 Thermoluminescence dosimetry -- 10.3 Synthesis techniques for nanophosphors -- 10.3.1 Precipitation method -- 10.3.2 Hydrothermal method -- 10.3.3 Sol-gel method -- 10.3.4 Spray pyrolysis method -- 10.3.5 Evaporation method -- 10.3.6 Combustion synthesis method -- 10.4 Nanocrystalline TLD materials -- 10.4.1 Cd1-xNixSiO3 nanocrystalline phosphors -- 10.4.2 Nanocrystalline MgB4O7: Dy, Na phosphors -- 10.4.3 Nanocrystalline K2Ca2(SO4)3:Cu+ phosphor -- 10.4.4 Nanocrystalline BaxSr1- xSO4:Dya%,Tbb% powder -- 10.4.5 Proton beam, 50 MeV Li3+ and 120 MeV Ag9+ ion beam irradiated MgB4O7:Dy -- 10.4.6 Garnet type Y2.99Al5-xGaxO12:0.01Pr3+ (YAGG:Pr3+) nanocrystals -- 10.4.7 K3Na(SO4)2:Eu -- 10.4.8 Mg2P2O7:Eu -- 10.4.9 CaAl2O4:Tm3+ -- 10.4.10 CaMg2(SO4)3:Dy3+ -- 10.4.11 Li2B4O7:Dy -- 10.5 Accidental nanophosphor dosimetry -- 10.6 Importance of nanophosphor radiation dosimetry -- 10.7 Future challenges -- References -- Chapter 11 Thermoluminescence radiation dosimetry in sulfate-based phosphors -- 11.1 Introduction -- 11.1.1 Fluorescence technique -- 11.1.2 Lyoluminescence method. , 11.1.3 Electron paramagnetic resonance technique.
    Additional Edition: Print version: Dhoble, Sanjay J. Radiation Dosimetry Phosphors San Diego : Elsevier Science & Technology,c2022 ISBN 9780323854719
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages