UID:
almahu_9949386144402882
Format:
1 online resource (xxvi, 394 pages) :
,
illustrations (some color)
ISBN:
0429318618
,
9781000038071
,
1000038076
,
9781000038026
,
1000038025
,
9781000038125
,
1000038122
,
9780429318610
Content:
"Forensic Engineering: The Art and Craft of a Failure Detective synthesizes the current academic knowledge, with advances in process and techniques developed in the last several years, to bring forensic materials and engineering analysis into the 21st century. The techniques covered in the book are applied to the myriad types of cases the forensic engineer and investigator may face, serving as a working manual for practitioners. Analytical techniques and practical, applied engineering principles are illustrated in such cases as patent and intellectual property disputes, building and product failures, faulty design, air and rail disasters, automobile recalls, and civil and criminal cases. Both private and criminal cases are covered as well as the legal obligation, requirements, and responsibilities under the law, particularly in cases of serious injury or even death. Forensic Engineering will appeal to professionals working in failure analysis, loss adjustment, occupational health and safety as well as professionals working in a legal capacity in cases of produce failure and liability-including criminal cases, fraud investigation, and private consultants in engineering and forensic engineering"--
Note:
〈P〉I Preface〈/P〉〈P〉II Contents〈/P〉〈P〉III Acknowledgements 〈/P〉〈P〉〈/P〉〈B〉〈P〉Chapter 1〈/P〉〈P〉Failure analysis or forensic engineering?〈/P〉〈/B〉〈P〉1.0 Synopsis〈/P〉〈P〉1.1 Historic failure analysis〈/P〉〈P〉1.2 Conventional failure analysis〈/P〉〈P〉1.3 Product defects〈/P〉〈P〉1.4 Causal Analysis〈/P〉〈P〉1.4.1 Computer aided causal analysis 〈/P〉〈P〉1.4.2 Case Study: wear markings as 'fingerprints'〈/P〉〈P〉1.5 Design calculations and modelling〈/P〉〈P〉1.5.1 Miner's Law for life time cumulative damage prediction 〈/P〉〈P〉1.6 Summation of conventional failure analysis〈/P〉〈P〉1.7 Forensic engineering〈/P〉〈P〉1.7.1 Case Study: Collapse of the Rana Plaza factory〈/P〉〈P〉1.8 Range of competence〈/P〉〈P〉1.8.1 A generic failure analysis or a forensic investigation? 〈/P〉〈P〉1.9 Forensic approach to failure〈/P〉〈P〉1.9.1 Reverse engineering〈/P〉〈P〉1.9.2 Associated costs of forensic investigation〈/P〉〈P〉1.10 Historic failures〈/P〉〈P〉1.10.1 Computer-aided technology limitations〈/P〉〈P〉1.11 Analytical techniques 〈/P〉〈P〉1.12 Dissemination of knowledge and experience〈/P〉〈P〉1.12.1 Popular books〈/P〉〈P〉1.12.2 Event reporting〈/P〉〈P〉1.12.3 Text books〈/P〉〈P〉1.12.4 Forensic engineering teaching〈/P〉〈P〉1.13 Case study themes〈/P〉〈P〉1.13.1 The Sayano-Shushenskaya power station accident of 2009 〈/P〉〈P〉1.14 Research enriched teaching〈/P〉〈P〉1.15 Concluding remarks〈/P〉〈P〉1.16 References〈/P〉〈P〉〈/P〉〈B〉〈P〉Chapter 2〈/P〉〈P〉Initial aspects of forensic failure investigation〈/P〉〈OL〉〈OL〉〈/B〉〈P〉〈LI〉Introduction〈/LI〉〈P〉〈/P〉〈/OL〉〈/OL〉〈P〉2.1 Three essential 'abstract' assets for the investigator 〈/P〉〈P〉2.1.1 Assessing the situation〈/P〉〈P〉2.1.2 Initial visual observation as a fact-finding exercise〈/P〉〈P〉2.1.3 The failure scenario〈/P〉〈P〉2.1.4 Summary of understated investigative skills〈/P〉〈P〉2.2 Visual observation〈/P〉〈P〉2.2.1 Case study: visual comparison〈/P〉〈P〉2.2.2 Case study: common (engineering) sense 〈/P〉〈P〉2.3 Forensic photography〈/P〉〈P〉2.4 Record keeping〈/P〉〈P〉2.5 Witness evidence〈/P〉〈P〉2.6 Documentary evidence〈/P〉〈P〉2.6.1 Case study: Fatal aircraft crash〈/P〉〈P〉2.7 Product and material standards〈/P〉〈P〉2.7.1 Case study: Step ladder accident 〈/P〉〈P〉2.8 Patents〈/P〉〈P〉2.9 Surviving remains (detritus)〈/P〉〈P〉2.9.1 Gathering of evidence and the 'Chain of Evidence' 〈/P〉〈P〉2.10 Product liability〈/P〉〈P〉2.10.1 Case study: Premature failure of a presentation cake knife 〈/P〉〈P〉2.11 The 'Corporate' environment〈/P〉〈P〉2.11.1 Case study: Bird-strike testing of aircraft engines 〈/P〉〈P〉2.12 Abuse or misuse〈/P〉〈P〉2.12.1 Case study: abuse〈/P〉〈P〉2.12.2 Case study: miss-use〈/P〉〈P〉2.13 References〈/P〉〈P〉〈/P〉〈B〉〈P〉Chapter 3 〈/P〉〈P〉A framework or methodology for forensic investigation 〈/P〉〈P〉〈/P〉〈OL〉〈OL〉〈/B〉〈P〉〈LI〉Introduction〈/LI〉〈P〉〈/P〉〈/OL〉〈/OL〉〈P〉3.1 Background to failure analysis methodology〈/P〉〈P〉3.2 An investigative path followed by the writer〈/P〉〈P〉3.2.1 Intuition (reasoning) and a 'structured' investigation framework〈/P〉〈P〉3.2.2 Individual stages of investigation〈/P〉〈P〉3.2.3 The field investigation kit〈/P〉〈P〉3.2.4 Initial approach to failure investigation〈/P〉〈P〉3.2.5 Background data collection〈/P〉〈P〉3.2.6 Sifting the evidence〈/P〉〈P〉3.2.6.1 Case study: Failure of a new design of horse bit 〈/P〉〈P〉3.2.7 Records〈/P〉〈P〉3.2.8 Single items of evidence〈/P〉〈P〉3.3 The failure detective〈/P〉〈P〉3.3.1 Transformation stresses〈/P〉〈P〉3.3.2 Establishing a load transfer path to determine the 'weakest link'〈/P〉〈P〉3.3.3 Case study: The weakest link principle〈/P〉〈P〉3.3.4 Case study: Failure of a backhoe dipper arm〈/P〉〈P〉3.4 Computer-aided technologies〈/P〉〈P〉3.4.1 Case study: failure of an open-ended spanner 〈/P〉〈P〉3.5 The forensic engineering Report〈/P〉〈P〉3.6 Concluding remarks〈/P〉〈P〉3.7 References〈/P〉〈P〉〈/P〉〈B〉〈P〉Chapter 4 〈/P〉〈P〉Analytical methods〈/P〉〈P〉〈/P〉〈/B〉〈P〉4.0 Introduction to a typical forensic engineering 'toolbox'〈/P〉〈P〉4.1 Non-destructive testing (NDT)〈/P〉〈P〉4.1.1 Case study: Failure of a power transmission shaft〈/P〉〈P〉4.2 Crack detection and the human eye〈/P〉〈P〉4.2.2 Surface appearance of common cracks〈/P〉〈P〉4.2.3 Other crack detection techniques〈/P〉〈P〉4.3 Hardness testing〈/P〉〈P〉4.3.1 Case study: Pin-punch splintering〈/P〉〈P〉4.3.2 Relationship between hardness and tensile strength〈/P〉〈P〉4.4 Indirect stress/strain analysis〈/P〉〈P〉4.4.1 Brittle lacquer technique〈/P〉〈P〉4.4.2 Case study: Cycle accident〈/P〉〈P〉4.4.3 Photo-elastic stress measurement〈/P〉〈P〉4.5 Conventional (contact) radiography〈/P〉〈P〉4.5.1 Case study: Failure of a vehicle motherboard〈/P〉〈P〉4.5.2 Case study: Heavy goods vehicle fire〈/P〉〈P〉4.6 Summary of NDT inspection〈/P〉〈P〉4.7 Forensic optical microscopy〈/P〉〈P〉4.7.1 Macroscopic examination〈/P〉〈P〉4.7.2 Examination under magnification: optical microscopy〈/P〉〈P〉4.7.3 Reflected light microscopy〈/P〉〈P〉4.7.4 Stereo microscopy〈/P〉〈P〉4.8 Metallography〈/P〉〈P〉4.9 Scanning electron microscopy〈/P〉〈P〉4.9.1 The environmental scanning electron microscope (ESEM)〈/P〉〈P〉4.9.2 Case study: Hit and run accident〈/P〉〈P〉4.10 Optical versus scanning microscopy〈/P〉〈P〉4.10.1 Case study: Printed circuit board (PCB) failure〈/P〉〈P〉4.10.2 Case study: Prototype PCB failure〈/P〉〈P〉4.11 Energy dispersive X-Ray analysis (EDAX)〈/P〉〈P〉4.12 Destructive testing methods〈/P〉〈P〉4.12.1 Tensile testing〈/P〉〈P〉4.12.2 Flexure or bending〈/P〉〈P〉4.12.3 Case study: Cracking of aluminium pressings〈/P〉〈P〉4.12.4 Torsion testing〈/P〉〈P〉4.12.5 Shear testing 〈/P〉〈P〉4.12.6 Izod or Charpy impact test〈/P〉〈P〉4.12.7 Differential scanning calorimetry (DSC)〈/P〉〈P〉4.12.8 Case study: Electronic component registration difficulties〈/P〉〈P〉4.13 Novel tools and techniques〈/P〉〈P〉4.13.1 The contour method 〈/P〉〈P〉4.13.2 Neutron diffraction〈/P〉〈P〉4.13.3 Nano test systems〈/P〉〈P〉4.13.4 Flash thermography〈/P〉〈P〉4.13.5 Thermographic Signal Reconstruction (TSR)〈/P〉〈P〉4.13.6 Electromagnetically induced acoustic emission (EMIAE)〈/P〉〈P〉4.13.7 Pulsed eddy current (PEC)〈/P〉〈P〉4.13.8 Microwave technology〈/P〉〈P〉4.14 References〈/P〉〈B〉〈P〉〈/P〉〈P〉Chapter 5〈/B〉 〈/P〉〈B〉〈P〉Sources of stress and service failure mechanisms〈/P〉〈/B〉〈P〉〈/P〉〈P〉5.0 Introduction〈/P〉〈P〉5.1 Fundamental mechanical background〈/P〉〈P〉5.1.1 Stresses and strains〈/P〉〈P〉5.1.2 Ductile and brittle transition〈/P〉〈P〉5.1.3 Fracture toughness and linear elastic fracture mechanics (LEFM)〈/P〉〈P〉5.1.4 Limitations of a fracture mechanics approach〈/P〉〈P〉5.1.5 Stress Concentration (Kt)〈/P〉〈P〉5.1.6 Case study: stress concentration -- cement mill power input shaft 〈/P〉〈P〉5.1.7 Residual stresses〈/P〉〈P〉5.1.8 Summary of fundamental mechanical background〈/P〉〈P〉5.2 Service failure mechanism〈/P〉〈P〉5.2.1 Case study: Hubble space telescope mirror and the Team Philips catamaran 〈/P〉〈P〉5.3 Mechanical Failure〈/P〉〈P〉5.4 Hydrogen Embrittlement〈/P〉〈P〉5.4.1 Sources of hydrogen 〈/P〉〈P〉5.4.2 〈EM〉Hydrogen induced brittle failure〈/P〉〈/EM〉〈P〉5.5 Impact〈/P〉〈P〉5.6 Bending〈/P〉〈P〉5.7 Torsion〈/P〉〈P〉5.8 Creep〈/P〉〈P〉5.9 Fatigue〈/P〉〈P〉5.9.1 Minimizing susceptibility to onset of fatigue failure〈/P〉〈P〉5.9.2 Case study: Failure of a power transmission gear wheel 〈/P〉〈P〉5.9.3 Fatigue related failure modes〈/P〉〈P〉5.9.4 Approximating the history of a fatigue failure〈/P〉〈P〉5.9.5 Summation of fatigue as a service failure mechanism〈/P〉〈P〉5.10 Wear〈/P〉〈P〉5.11 Corrosion〈/P〉〈P〉5.11.1 Case study: The Statue of Liberty 〈/P〉〈P〉5.11.2 Stress Corrosion Cracking (SCC)〈/P〉〈P〉5.11.3 Case study: SCC of brass impeller blades〈/P〉〈P〉5.12 Manufacturing fabrication as a source of stress〈/P〉〈P〉5.12.1 Casting〈/P〉〈P〉5.12.2 Casting Failure Analysis〈/P〉〈P〉5.12.3 Case study: Extrusion press〈/P〉〈P〉5.12.4 Welding〈/P〉〈P〉5.12.5 Quench cracking〈/P〉〈P〉5.12.6 Tempering and toughening〈/P〉〈B〉〈P〉〈/B〉5
Additional Edition:
Print version: Gagg, Colin. Forensic engineering Boca Raton, FL : CRC Press, Taylor & Francies Group, 2020. ISBN 9780367251680
Language:
English
Keywords:
Electronic books.
;
Electronic books.
DOI:
10.4324/9780429318610
URL:
https://www.taylorfrancis.com/books/9780429318610