Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949455315902882
    Format: 1 online resource (534 pages)
    ISBN: 0-443-19181-6
    Note: Includes index. , Intro -- Current Developments in Biotechnology and Bioengineering: Membrane Technology for Sustainable Water and Energy Management -- Copyright -- Contents -- Contributors -- Preface -- Part A: General on membrane, materials and application -- Chapter 1: Classification of membranes: With respect to pore size, material, and module type -- 1. Introduction -- 2. Types of membranes -- 2.1. MF and UF membranes -- 2.2. NF membranes -- 2.3. RO membranes -- 3. Materials of membrane -- 3.1. Organic membrane -- 3.2. Inorganic membranes -- 3.3. Hybrid membranes -- 3.4. Novel materials for membrane -- 4. Membrane configurations and modules -- 5. Conclusions and perspectives -- References -- Chapter 2: Photocatalytic membrane reactors (PMRs) for hydrogen production -- 1. Introduction -- 2. Photocatalytic material-based membranes -- 2.1. Definition -- 2.2. Photocatalytic materials -- 2.2.1. Pure semiconductors -- 2.2.2. Composite -- 3. Membrane-based photocatalytic system -- 3.1. Hydrogen production with membrane filtration -- 3.2. Photocatalytic membranes -- 3.2.1. Photocatalyst-coated membranes -- 3.2.2. Photocatalyst-blended membranes -- 3.2.3. Free-standing photocatalytic membranes -- 3.3. Configuration and operation of photocatalytic membrane reactors -- 4. Factors affecting the hydrogen production performance of PMRs -- 4.1. Photocatalyst material characteristics -- 4.2. Operation mode -- 4.3. Light source -- 5. Conclusions and perspectives -- Acknowledgments -- References -- Chapter 3: In situ real-time monitoring technologies for fouling detection in membrane processes -- 1. Introduction -- 2. Foulants and their conventional quantifications in water samples -- 2.1. Particles -- 2.2. Organics -- 2.3. Inorganics -- 2.4. Microbes -- 3. Conventional technologies for detecting fouling -- 3.1. Membrane autopsy. , 3.2. Confocal laser scanning microscopy (CLSM) -- 3.3. Atomic force microscopy (AFM) -- 3.4. Scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM-EDX) -- 3.5. Fourier transform infrared spectroscopy (FT-IR) -- 3.6. Contact angle -- 4. Novel technologies for detecting fouling -- 4.1. Fouling observation on pressurized microfiltration/ultrafiltration (MF/UF) membrane systems -- 4.1.1. Optical coherence tomography (OCT) technology -- 4.1.2. In situ EEM (solid-phase fluorescence EEM, SPF-EEM) -- 4.1.3. In situ real-time investigations by using the quartz crystal microbalance with dissipation monitoring (QCM-D) -- 4.1.4. Electrochemical impedance spectroscopy (EIS) -- 4.2. Fouling observation on the pressurized nanofiltration/reverse osmosis (NF/RO) membrane systems -- 4.2.1. Adenosine triphosphate (ATP) measurement -- 4.2.2. Electrochemical impedance spectroscopy (EIS) -- 4.2.3. Real-time computational imaging by using a digital camera -- 4.2.4. Excitation emission matrix-Parallel factor analysis (EEM-PARAFAC) -- 4.3. Fouling detection on the nonpressurized forward osmosis (FO) system -- 4.3.1. Direct techniques -- 4.3.2. Optical coherence tomography (OCT) -- 4.3.3. Confocal laser scanning microscopy (CLSM) -- 4.4. Fouling detection on the nonpressurized membrane distillation (MD) system -- 4.4.1. Direct observation -- 4.4.2. Optical coherence tomography (OCT) -- 4.4.3. Electrical impedance spectroscopy (EIS) -- 4.5. Fouling observation on the nonpressurized electrodialysis (ED) system -- 4.5.1. Electrical impedance spectroscopy (EIS) -- 4.5.2. Transmembrane electric potential (TMEP) -- 4.6. Fouling observation on the nonpressurized capacitive deionization (CDI) system -- 4.6.1. Electrical impedance spectroscopy (EIS) -- 5. Conclusions and perspectives -- References. , Chapter 4: Life-cycle assessment of membrane-based desalination technologies and alternatives -- 1. Introduction -- 2. Desalination technologies -- 2.1. Reverse osmosis (RO) desalination technology -- 2.2. Multistages flash (MSF) -- 2.3. Multieffect distillation (MED) -- 2.4. Capacitive deionization (CDI) -- 2.5. Membrane distillation (MD/Memstill) -- 3. Life-cycle environmental impacts of desalination -- 3.1. Life-cycle inventory (LCI) review -- 3.2. Global warming potential -- 3.2.1. RO -- 3.2.2. MED -- 3.2.3. MSF -- 3.2.4. CDI -- 3.3. Average of environmental impacts of different desalination technologies -- 4. Carbon footprint and correlation to the geography of first ranked countries in desalination capacities -- 4.1. The number of peer-reviewed scientific publications correlated to the capacity of desalination plants -- 4.2. The impact of energy grid mix on the carbon footprint in desalination -- 5. Techno-economic assessment (TEA) of different desalination technologies -- 6. Conclusions and perspectives -- References -- Part B: Applications of membrane technology for water and wastewater treatment -- Chapter 5: Aerobic and anaerobic membrane bioreactors for seafood processing wastewater treatment -- 1. Introduction -- 2. Membrane bioreactor technologies -- 2.1. Aerobic membrane bioreactor (AMBR) -- 2.1.1. Mechanism of aerobic process -- 2.1.2. Technical characteristics of MBR -- 2.1.3. Effects of salinity on MBR -- 2.1.4. Physicochemical properties -- 2.1.4.1. Microorganism properties -- 2.1.4.2. Membrane properties -- 2.1.5. Application of aerobic MBR in seafood processing wastewater treatment -- 2.2. Anaerobic membrane bioreactor (AnMBR) -- 2.2.1. Mechanism of the anaerobic process -- 2.2.2. Technical characteristics of AnMBR -- 2.2.3. Effects of salinity on AnMBR -- 2.2.3.1. Microorganism properties -- 2.2.3.2. Membrane properties. , 2.2.3.3. Biogas production -- 2.2.4. Application of AnMBR in seafood processing wastewater treatment -- 2.2.5. Energy recovery -- 2.3. Advantages and disadvantages of MBR and AnMBR -- 3. Conclusions and perspectives -- Acknowledgments -- References -- Chapter 6: Ultralow pressure membrane filtration for water and wastewater treatment -- 1. Introduction -- 2. Terminology and applications of ultralow pressure membrane filtration (ULPMF) -- 2.1. Ultralow pressure -- 2.2. ULPMF system and operation -- 2.3. Applications -- 2.3.1. Decentralized potable water treatment treating surface or rainwater -- 2.3.2. Pretreatment of seawater desalination using reverse osmosis -- 2.3.3. Filtration of wastewater and gray water -- 3. Characteristics of ULPMF processes -- 3.1. The stable flux of ULPMF -- 3.2. Enhanced organic removal -- 3.3. Biofilm ecosystem -- 3.3.1. Morphology -- 3.3.2. Composition -- 3.3.3. Component and composition of organic/inorganic substances -- 4. Factors influencing ULPMF performance -- 4.1. Feed -- 4.2. Dissolved oxygen and temperature -- 4.3. Membrane material and type and properties -- 4.4. Operation pressure -- 4.5. Continuous vs intermittent operation -- 4.6. Shear conditions -- 4.7. Biotechnology and bioengineering -- 5. Process integration -- 6. Economic assessment -- 6.1. Cost factors -- 6.2. Cost comparison of ULPMF with the conventional MF/UF or MBR -- 7. Environmental impact and sustainability assessments -- 7.1. Environmental impact assessment of ULPMF -- 7.2. Overall sustainability assessment of ULPMF -- 7.2.1. Gravity-driven membrane filtration as a sustainable ULPMF -- 7.2.2. ULPMF as a pre- or posttreatment technique for other technologies -- 7.2.3. ULPMF as a sink for EOL membranes -- 8. Conclusions and perspectives -- References -- Chapter 7: Commercial scale membrane-based produced water treatment plant -- 1. Introduction. , 2. Produced-water treatment steps and technologies -- 3. Membrane technologies in produced-water treatment -- 3.1. Membrane processes -- 3.2. Membrane fouling -- 4. Integrated membrane system -- 5. Commercial membrane technologies for produced-water treatment -- 6. Conclusions and perspectives -- References -- Chapter 8: Membrane bioreactor for wastewater treatment: Fouling and abatement strategies -- 1. Introduction -- 2. Configuration and types of membrane bioreactors -- 3. Aerobic and anaerobic MBR -- 3.1. Aerobic membrane bioreactor -- 3.2. Anaerobic membrane bioreactor -- 4. Aerobic versus anaerobic treatment and AnMBR -- 5. Fouling, the main hindrance in the widespread use of MBR -- 5.1. Types of fouling -- 5.2. Fouling mechanism in membrane bioreactors -- 6. Factors affecting fouling in MBR -- 6.1. Membrane characteristics -- 6.1.1. Membrane material -- 6.1.2. Hydrophobicity, hydrophilicity, and roughness of the membrane -- 6.1.3. Pore size and porosity -- 6.2. Feed characteristics -- 6.2.1. Particle size and concentration -- 6.2.2. Ionic strength, pH, and salinity -- 6.2.3. Hydrophilicity/hydrophobicity of NOM -- 6.2.4. Molecular size of organics -- 6.3. Operational conditions -- 6.3.1. MLSS concentrations -- 6.3.2. OLR, SRT, HRT, F:M -- 6.3.3. Temperature -- 6.3.4. COD:N -- 6.3.5. Operating mode/transmembrane pressure (TMP) -- 6.3.6. Aeration -- 6.3.7. Dissolved oxygen -- 7. Fouling abatement strategies -- 7.1. Physiochemical strategies -- 7.1.1. Relaxation and backwashing with permeate -- 7.1.2. Chemicals enhanced backwash -- 7.1.3. Air sparging -- 7.1.4. Sonication -- 7.1.5. Adsorbent and granular media addition -- 7.1.6. Coagulant addition -- 7.2. Biological strategies: Quorum sensing abatement through quorum quenching -- 7.2.1. Quorum sensing -- 7.2.2. Quorum quenching -- 8. Conclusions and perspectives -- References. , Chapter 9: Membrane and filtration processes for microplastic removal.
    Additional Edition: Print version: Bui, Xuan-Thanh Current Developments in Biotechnology and Bioengineering San Diego : Elsevier,c2023 ISBN 9780443191800
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages