Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Weinheim, Germany :Wiley-VCH,
    UID:
    almahu_9949530967202882
    Umfang: 1 online resource (466 pages)
    ISBN: 9783527698042 , 3527698043 , 9783527698066 , 352769806X , 9783527698059 , 3527698051
    Anmerkung: Cover -- Title Page -- Copyright -- Contents -- Preface -- Foreword -- Chapter 1 Introduction to Ceramic Materials -- 1.1 Introduction: Ceramics for Biotechnological and Environmental Applications -- 1.2 What are Ceramic Materials? -- 1.2.1 Advanced and Traditional Ceramics -- 1.2.2 Properties of Advanced Ceramics -- 1.3 Oxide Ceramics -- 1.3.1 Alumina -- 1.3.1.1 Alumina Structure and Properties -- 1.3.1.2 Applications of Alumina: Some Examples -- 1.3.2 Titania -- 1.3.2.1 Titania Structure and Properties -- 1.3.2.2 Applications of Titania: Some Examples -- 1.3.3 Zirconia -- 1.3.3.1 Zirconia Structure and Properties -- 1.3.3.2 Applications of Zirconia: Some Examples -- 1.3.4 Silica -- 1.3.4.1 Properties of Silica -- 1.3.4.2 Application of Silica: Some Examples -- 1.3.5 Iron oxide -- 1.3.6 Barium Titanate -- 1.4 Nonoxide Ceramics -- 1.4.1 Nitrides -- 1.4.2 Carbides -- 1.5 Carbon-based Materials -- 1.6 Conclusions -- References -- Chapter 2 Processing Methods for Advanced Ceramics -- 2.1 Introduction -- 2.2 Powder Synthesis and Preparation -- 2.3 Shaping Methods -- 2.3.1 Pressing -- 2.3.2 Plastic Forming -- 2.3.2.1 Extrusion -- 2.3.2.2 Injection Molding -- 2.3.3 Colloidal Shaping -- 2.3.3.1 Slip Casting -- 2.3.3.2 Gel-casting -- 2.3.3.3 Freeze-casting -- 2.3.3.4 Sol-gel Process -- 2.3.3.5 Tape Casting -- 2.4 Additive Manufacturing -- 2.5 Conclusions -- References -- Chapter 3 Surface Modification of Ceramic Materials -- 3.1 Introduction -- 3.2 Chemical Activation Strategies for Inert Ceramic Surfaces -- 3.2.1 Wet Chemical Hydroxylation: Acidic vs. Basic Hydroxylation -- 3.2.2 Hydrothermal Activation -- 3.2.3 Oxygen Plasma Treatment -- 3.3 Derivatization Strategies by Wet Chemistry Functionalization -- 3.3.1 Wet Chemical Silanization -- 3.3.2 Wet Chemical Nonsilane Functionalization. , 3.4 Ceramic Surface Decoration for Biotechnological and Environmental Applications -- 3.4.1 Biotechnological Applications -- 3.4.2 Environmental Applications -- 3.5 Summary and Outlook -- References -- Chapter 4 Methods for Surface Imaging and Combined Structural and Chemical Surface Analysis: Atomic Force Microscopy -- 4.1 Introduction -- 4.2 The Basic AFM Modes of Operation -- 4.2.1 Imaging modes -- 4.3 Dry AFM vs. Liquid-cell AFM -- 4.4 Technical Details About the AFM Imaging Process -- 4.4.1 Properties of Piezo Transducers and the Scanning Process -- 4.4.2 Properties of the Feedback Loops and Resulting Signals -- 4.4.3 Mechanical Stability and Tip Size Effects -- 4.4.4 Image Processing, Analysis and Interpretation -- 4.4.5 Secondary Contrasting Techniques -- 4.4.6 Suitability of Samples and Sample Preparation -- 4.5 Application of AFM for Biotechnological and Environmental Purposes -- 4.5.1 Testing the Surface Charges and Surface Chemistry of Functionalised Ceramics Surfaces -- 4.5.2 AFM for Environmental Applications -- 4.5.3 AFM Biofilm Formation - Microbiology -- 4.6 Conclusions -- References -- Chapter 5 Surface Chemical Analysis of Ceramics and Ceramic-Enhanced Analytics -- 5.1 Introduction -- 5.2 Methods for Surface Chemical Analysis of Ceramics: An Overview -- 5.2.1 Electron Spectroscopy (PES, Auger) -- 5.2.2 X-ray and UV Photoelectron Spectroscopy (XPS and UPS) -- 5.2.3 Auger Spectroscopy -- 5.2.4 Surface Chemical Analysis with XPS and Auger Spectroscopy -- 5.2.5 Secondary Ion Mass Spectrometry (SIMS) -- 5.2.6 Raman and Infrared Spectroscopy -- 5.3 Using Ceramic Colloids and Nanomaterials for Advanced Surface Chemical Analysis -- 5.3.1 Playing with Light Confinement, Morphology-dependent Resonances and Evanescent Fields: Opportunities for Optical Sensing and Vibrational Spectroscopy -- 5.3.2 Surface Sensing by Whispering Gallery Modes. , 5.3.3 Applications in Raman Microspectroscopy -- 5.3.3.1 Microlenses for Raman Microspectroscopy -- 5.3.3.2 SiO2/TiO2 and Hollow-shell Titania Resonators: Plasmon-free SERS -- 5.3.3.3 Probing Surface Chemical Reactions in Metal/Ceramic Composites -- 5.3.4 Ceramics for Matrix-assisted Laser Desorption Mass Spectrometry -- 5.4 Concluding Remarks and Outlook -- References -- Chapter 6 Methods for Electrokinetic Surface Characteristics -- 6.1 Introduction -- 6.2 The Electric Double-layer -- 6.3 Electrokinetic Phenomena-theory -- 6.3.1 Electrophoresis -- 6.3.2 Streaming Current-streaming Potential -- 6.3.3 Particle Covered Surfaces -- 6.4 Experimental Evidences, Applications -- 6.4.1 Electrophoretic Characteristics of Surfaces -- 6.4.2 Nano and Microparticle Suspensions -- 6.4.3 Protein Covered Particles -- 6.4.4 Streaming Current/Streaming Potential Characteristics of Surfaces -- 6.4.5 Bare Substrates -- 6.4.6 Polyelectrolyte Modified Surfaces -- 6.4.7 Particle Covered Surfaces -- 6.4.8 Protein Covered Surfaces -- 6.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 7 Functionalized Surfaces and Interactions with Biomolecules -- 7.1 Introduction -- 7.2 Fundamentals of Biomolecule Interactions with Functionalized Material Surfaces -- 7.2.1 Forces Between Biomolecules and Functionalized Surfaces -- 7.2.1.1 van der Waals forces -- 7.2.1.2 Electrostatic Interaction Forces -- 7.2.1.3 Hydrogen Bonds -- 7.2.1.4 Hydration and Hydrophobic Interaction Forces -- 7.2.1.5 Steric Interaction Forces -- 7.2.1.6 Specific Interaction Forces -- 7.2.1.7 Nonequilibrium Interaction Forces -- 7.2.1.8 Other Forces -- 7.2.2 Which Biomolecule, Media, and Material Properties Influence Biomolecule-Material Interactions? -- 7.2.2.1 Material Properties Influencing Biomolecule-Material Interactions. , 7.2.2.2 Biomolecule Properties Influencing Biomolecule-Material Interactions -- 7.2.2.3 Media Properties Influencing Biomolecule-Material Interactions -- 7.2.3 Events Occurring After Adsorption -- 7.3 Influence of Surface Functionality, Multifunctionality, and Heterogeneous Surface Chemistry -- 7.3.1 Charged and Zwitterionic Groups -- 7.3.2 Polymeric Surface Functionalization -- 7.3.3 Multifunctionality and Heterogeneity -- 7.3.4 Specific-Binding Surface Chemistries -- 7.4 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 8 Interactions Between Surface Material and Bacteria: From Biofilm Formation to Suppression -- 8.1 Introduction -- 8.2 Biofilm Formation -- 8.3 Theoretical Models of Bacteria-Surface Interactions -- 8.3.1 The Thermodynamic Theory -- 8.3.2 DLVO Model -- 8.3.3 Extended DLVO-Theory -- 8.4 Detrimental Effects of Biofilms: Some Examples -- 8.5 Prevention of Biofilm Formation -- 8.5.1 Stimuli Responsive Coatings -- 8.5.2 Drug Release Antibacterial Materials -- 8.6 Characterization of Antimicrobial Materials and Coatings -- 8.6.1 Standards for Biofilm Growth and Analysis -- 8.7 Conclusions and Outlook -- References -- Chapter 9 Carbon Nanomaterials for Antibacterial Applications -- 9.1 Introduction -- 9.1.1 Important Material Properties that Govern Antibacterial Activity -- 9.1.2 Effect of Nanomaterial Size on Bacterial Viability -- 9.1.3 Effect of Nanomaterial Surface Functionalities on Cellular Viability -- 9.1.4 Proposed Mechanisms for Antibacterial Activity -- 9.2 Inherent Antibacterial Properties of Carbon Nanomaterials -- 9.2.1 Graphene -- 9.2.2 Carbon Nanotubes -- 9.2.3 Fullerenes -- 9.2.4 Nanodiamonds -- 9.2.5 Diamond-Like Carbon, Diamond Thin Films -- 9.3 Functionalization of Carbon Nanomaterials for Tailoring Antibacterial Properties -- 9.3.1 Graphene -- 9.3.2 Carbon Nanotubes -- 9.3.3 Fullerenes. , 9.3.4 Nanodiamonds -- 9.3.5 Diamond-Like Carbon, Diamond Thin Films -- 9.4 Summary and Outlook -- References -- Chapter 10 Mesoporous Silica and Organosilica Biosensors for Water Quality and Environmental Monitoring -- 10.1 Introduction -- 10.2 Mesoporous Silica Materials for Biosensor Development -- 10.3 Functionalization of Mesoporous Silica and Organosilica-Based Biosensors -- 10.3.1 Surface Functionalization -- 10.3.2 Immobilization of Enzymes on Silica-Based Mesoporous Materials for Biosensors -- 10.3.3 Electrochemical Biosensor -- 10.4 Applications of Mesoporous Silica and Organosilica-Based Biosensors -- 10.4.1 Glucose Sensing -- 10.4.2 Hemoglobin and Myoglobin Sensing Using Molecularly Imprinted Polymers -- 10.4.3 Mesoporous Silica-Based Biosensors for Water Quality Monitoring -- 10.4.4 Mesoporous Silica and Organosilica-Based Materials for Toxic Gas Sensing -- 10.4.5 Mesoporous Silica and Organosilica-Based Immunosensors -- 10.5 Conclusions and Outlook -- Acknowledgments -- Abbreviations -- References -- Chapter 11 Ceramic-Based Adsorbents in Bioproduct Recovery and Purification -- 11.1 Introduction -- 11.2 Chromatography and Chromatography Support -- 11.3 Functionalization of Ceramic-Based Adsorbents -- 11.3.1 Chemobiological Functionalization -- 11.3.2 Self-Assembled Systems -- 11.3.3 Composite Structures -- 11.4 Characterization of Ceramic Adsorbent Particles -- 11.4.1 Physicochemical Analysis -- 11.4.2 Surface Energetics -- 11.5 Fundamentals of Bioproduct Adsorption onto Ceramic Beads -- 11.6 Application of Ceramic-Based Adsorbents -- 11.6.1 General Chromatography -- 11.6.2 Facilitated Protein Purification -- 11.6.3 Integrated Downstream Bioprocessing -- 11.7 Conclusions and Outlook -- References -- Index -- EULA.
    Weitere Ausg.: ISBN 3527338357
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz