Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    London, England :Elsevier Inc.,
    UID:
    almahu_9949600166802882
    Umfang: 1 online resource (317 pages)
    Ausgabe: First edition.
    ISBN: 0-323-97228-4
    Inhalt: CRISPR-Cas System in Translational Biotechnology discusses applied and translational aspects of the CRISPR-Cas technology. The book bridges the gap between theoretical knowledge and practical solutions surrounding this emerging and impactful technology in several academic and industrial fields. It is split in five sections: CRISP-Cas fundamentals and advancements; CRISP-Cas in medical biotechnology; CRISP-Cas in environmental biotechnology; CRISP-Cas in food biotechnology; and biosafety, patents and commercialization of CRISP-Cas technology. Written by experts from diverse backgrounds, the content covers the subject and its impact in multiple fields.
    Anmerkung: Front Cover -- CRISPR-Cas System in Translational Biotechnology -- Copyright Page -- Contents -- List of contributors -- 1 CRISPR-Cas fundamentals and advances -- 1 CRISPR-Cas9: chronology and evolution -- 1.1 Introduction -- 1.2 Discovery of CRISPR-Cas system -- 1.3 Mechanism of CRISPR-Cas system -- 1.4 Classification of CRISPR-Cas system -- 1.4.1 Class I CRISPR-Cas system -- 1.4.1.1 Type I -- 1.4.1.2 Type III -- 1.4.1.3 Type IV -- 1.4.2 Class II CRISPR-Cas system -- 1.4.2.1 Type II system -- 1.4.2.2 Type V system -- 1.4.2.3 Type VI system -- 1.5 Limitations of CRISPR technology -- 1.5.1 CRISPR-Cas9 off-target effects -- 1.5.2 DNA damage and apoptosis -- 1.5.3 Immunotoxicity -- 1.5.4 Delivery of CRISPR system to hosts -- 1.6 Applications of CRISPR technology -- 1.6.1 Role of CRISPR in gene regulation -- 1.6.2 In metabolic engineering -- 1.6.3 Role of CRISPR in COVID-19 -- 1.6.4 CRISPR for animal model preparation -- 1.7 Conclusions and future perspectives -- References -- 2 CRISPR: the Janus god of modern science -- 2.1 Introduction -- 2.2 Timeline of developments in CRISPR-Cas system -- 2.3 Applications of CRISPR-Cas gene-editing system in human diseases -- 2.3.1 In the treatment of genetic disorders -- 2.3.2 In the treatment of various types of cancer -- 2.3.3 In the treatment of acquired immunodeficiency syndrome -- 2.3.4 In the treatment of neurodegenerative disorders -- 2.3.5 In Coronavirus disease 2019 -- 2.4 Applications of CRISPR system in agriculture for crop improvement -- 2.4.1 Increasing productivity -- 2.4.2 Quality improvement -- 2.4.3 Tolerance to biotic and abiotic stress -- 2.4.4 Herbicide resistance -- 2.4.5 Expediting hybrid breeding -- 2.5 Applications of CRISPR-Cas9 system in environmental science -- 2.5.1 Bioplastic -- 2.5.2 Biofuel -- 2.5.3 Biosensors -- 2.5.4 Bioremediation. , 2.6 Limitations of CRISPR-Cas9 gene-editing system in medicinal, agricultural, and environmental sectors -- 2.6.1 Limitations of CRISPR in the medicinal field -- 2.6.1.1 Mutations -- 2.6.1.2 Immunotoxicity -- 2.6.2 Limitations of CRISPR in agricultural crops -- 2.6.3 Limitations of CRISPR on the environment -- 2.6.4 Implications for Cas and mitigating strategies -- 2.7 Conclusions -- References -- 3 Commercialization of CRISPR-Cas technology: issues and impact -- 3.1 Introduction -- 3.2 CRISPR-Cas IPR dispute: who stands where? -- 3.3 Worldwide patent landscape of CRISPR -- 3.4 A commercial conundrum -- 3.5 Ethical concerns -- 3.6 Challenges in commercialization of CRISPR-Cas -- 3.6.1 Agriculture -- 3.6.2 Medicine -- 3.7 Conclusions -- References -- 2 CRISPR-Cas in medical biotechnology -- 4 CRISPR-Cas-led advancements in translational biotechnology -- 4.1 Introduction -- 4.2 Genome editing tools before CRISPR -- 4.2.1 Zinc finger nucleases -- 4.2.2 Transcription activator-like effector nucleases -- 4.2.3 Adeno-associated viruses -- 4.3 CRISPR technology -- 4.3.1 Components of CRISPR -- 4.3.2 Cas enzymes -- 4.3.2.1 Cas9 -- 4.3.2.2 Cas12a -- 4.3.2.3 Cas13 -- 4.3.3 How does CRISPR work? -- 4.3.3.1 Creation of double-stranded breaks -- 4.3.3.2 Repair of CRISPR-induced double-stranded breaks -- 4.3.3.2.1 Nonhomologous End Joining -- 4.3.3.2.2 Homologous directed repair -- 4.3.4 Channelized workflow of CRISPR -- 4.3.5 Delivery methods of CRISPR components in the cell -- 4.3.5.1 Electroporation -- 4.3.5.2 Lipofection (transfection) -- 4.3.5.3 Microinjection -- 4.4 Knock-outs and knock-ins using CRISPR system -- 4.4.1 Disrupting a gene in the cell line via CRISPR system: knock-out -- 4.4.2 Rectification of gene mutation or designing a fusion protein in cell line: knock-in -- 4.4.3 Why is high homology-directed repair important?. , 4.5 Applicability of CRISPR beyond just simple editing -- 4.5.1 CRISPR screens -- 4.5.2 CRISPR without double-stranded breaks -- 4.5.3 Gene Silencing through CRISPR interference (CRISPRi) -- 4.5.4 Gene activation (CRISPRa) -- 4.5.5 Anti-CRISPR -- 4.5.6 Nonediting functions with dCas9 comprising of RNP -- 4.5.7 Gene visualizations -- 4.6 Conclusions and future perspectives -- References -- 5 Molecular engineering of CRISPR-Cas system toward in vitro diagnostics -- 5.1 Introduction -- 5.2 Historical developments -- 5.3 CRISPR-Cas-mediated sensing of nucleic acid targets -- 5.3.1 DNA -- 5.3.2 RNA -- 5.4 CRISPR-Cas-mediated sensing of nonnucleic-acid targets -- 5.4.1 Proteins -- 5.4.2 Enzyme activity -- 5.4.3 Small organic compounds and metal ions -- 5.5 Challenges -- 5.6 Conclusions -- References -- 6 The CRISPR-Cas technology: trends in healthcare -- 6.1 Introduction -- 6.2 Overview of the CRISPR-Cas system -- 6.3 Historical Background -- 6.4 Emerging applications of CRISPR-Cas systems in healthcare -- 6.4.1 Disease diagnosis -- 6.4.2 Genome-scale screening -- 6.4.3 Typing of bacterial strains -- 6.4.4 Antimicrobial tool: targeting drug resistance and microbial pathogens -- 6.4.5 Genome editing tools in therapeutics -- 6.4.6 Antiviral therapies -- 6.5 Potential of CRISPR-based therapeutics in various diseases and disorders -- 6.5.1 Infectious diseases -- 6.5.2 Genetic disorders -- 6.5.2.1 Monogenic disorders -- 6.5.2.1.1 Cystic fibrosis -- 6.5.2.1.2 Sickle cell anemia -- 6.5.2.1.3 β-thalassemia -- 6.5.2.1.4 Duchenne muscular dystrophy -- 6.5.2.1.5 Hemophilia -- 6.5.2.2 Multifactorial diseases -- 6.5.2.2.1 Diabetes -- 6.5.2.2.2 Cardiovascular disease -- 6.5.2.2.3 Cancer -- 6.6 CRISPR-Cas9 for developing disease models -- 6.7 Drug target discovery -- 6.8 CRISPR babies: ethical or unethical -- 6.9 Conclusions -- References. , 7 CRISPR-Cas system and its role in the development of viral disease diagnostics -- 7.1 Introduction -- 7.2 CRISPR-Cas in a snapshot -- 7.3 CRISPR-Cas-based diagnostics -- 7.3.1 NASBA-CC -- 7.3.1.1 Functioning of toehold switches -- 7.3.1.2 Zika and toehold switches -- 7.3.1.3 CRISPR-Cas9 with NASBA and toehold switch -- 7.3.2 DETECTR -- 7.3.3 HOLMES -- 7.3.4 SHERLOCK (Specific High Sensitivity Enzymatic Reporter Unlocking) -- 7.3.5 HUDSON -- 7.3.6 FELUDA -- 7.3.7 E-CRISPR -- 7.3.8 CRISDA -- 7.4 Conclusions -- References -- 8 Unlocking new ways to tackle tuberculosis using CRISPR-Cas as a potent weapon -- 8.1 Introduction to tuberculosis -- 8.1.1 Epidemiology of tuberculosis -- 8.1.2 Mechanism of pathogenesis -- 8.1.3 Virulence of M. tuberculosis -- 8.2 Essentiality of tools for tackling tuberculosis -- 8.2.1 Expected increase in tuberculosis cases due to effect of COVID pandemic -- 8.2.2 Drug-resistant tuberculosis -- 8.3 CRISPR and tuberculosis -- 8.3.1 CRISPR systems in M. tuberculosis -- 8.3.2 CRISPR technology for genetic engineering -- 8.4 Applications of CRISPR in tackling tuberculosis -- 8.4.1 In functional genomic screening -- 8.4.2 In tackling drug resistance -- 8.4.3 In identification of virulent genes as potential drug targets -- 8.4.4 In diagnosis of tuberculosis -- 8.5 Conclusions and future perspectives -- References -- 9 Application of CRISPR-Cas in disease diagnosis and management -- 9.1 Introduction -- 9.2 Diagnosis of infectious diseases by CRISPR-Cas system -- 9.2.1 Detection of pathogens by CRISPR-Cas system -- 9.2.1.1 CRISPR-based lateral flow assays -- 9.2.1.2 Fluorescence-based diagnostic kits -- 9.3 Diagnosis of noninfectious agents by CRISPR-Cas system -- 9.4 CRISPR-Cas system for animal and cell models -- 9.5 CRISPR-Cas system for diagnosis of plant disease -- 9.6 Challenges and future perspectives -- References. , 3 CRISPR-Cas in environmental biotechnology -- 10 Environmental metagenomics and CRISPR-Cas -- 10.1 Introduction -- 10.2 CRISPR in the investigation of different microbiomes -- 10.2.1 Agricultural microbiome -- 10.2.2 Environmental microbiome -- 10.2.3 Oral microbiome -- 10.2.4 Gut microbiome -- 10.3 Anti CRISPRs -- 10.4 Conclusions and future perspective -- References -- 11 CRISPR systems tackling fungal infections -- 11.1 Introduction -- 11.2 CRISPR in Candida -- 11.3 CRISPR in Cryptococcus species complex -- 11.4 CRISPR in Aspergillus fumigatus -- 11.5 Conclusions -- References -- 4 CRISPR-Cas in food and agriculture biotechnology -- 12 CRISPR-Cas technologies in food security and food revolution -- 12.1 Introduction -- 12.2 What is CRISPR-Cas-an insight -- 12.3 Applications and limitations of the CRISPR-Cas system -- 12.4 CRISPR-Cas in agriculture -- 12.5 CRISPR-Cas in food processing and technology -- 12.6 Conclusions -- References -- 13 Overview of the genome editing in rice and its implications -- 13.1 Introduction -- 13.2 Technologies for genome editing in rice -- 13.2.1 CRISPR Cas9-based editing -- 13.2.2 Multiplex genome editing -- 13.2.3 CRISPR-Cas12a/Cpf1 -- 13.2.4 Zinc-finger nucleases (ZFNs) -- 13.2.5 TALENs -- 13.2.6 Base editing -- 13.3 Safety concerns -- 13.3.1 Risks to the health of humans and animals -- 13.3.2 Environmental issues -- 13.3.3 Public concerns -- 13.3.4 Transgene-free editing of rice -- 13.4 Conventional methods for transgene removal -- 13.4.1 Transient expression of CRISPR-Cas9 machinery -- 13.4.2 Suicide transgene -- 13.4.3 Fluorescence-based technology -- 13.4.4 CRISPR-Cas9 ribonucleoproteins -- 13.5 Conclusions -- References -- 14 Biotechnological applications of CRISPR-Cas systems in fungi -- 14.1 Introduction -- 14.2 An historical overview of CRISPR-Cas technological advancements in fungal research. , 14.3 CRISPR-Cas systems in fungi of biotechnological importance.
    Weitere Ausg.: Print version: Joshi, Swati CRISPR-Cas System in Translational Biotechnology San Diego : Elsevier Science & Technology,c2023 ISBN 9780323918084
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz