Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    UID:
    almahu_9949602161202882
    Umfang: 1 online resource (240 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030036355
    Serie: Coastal Research Library ; v.31
    Anmerkung: Intro -- Foreword -- Acknowledgements -- Contents -- 1: The Rise of 3D in Maritime Archaeology -- 1.1 Background -- 1.2 The Importance of 3D for Maritime Archaeology -- 1.3 Photogrammetry -- 1.4 Beyond Survey -- 1.5 Future Directions -- 1.6 Standards -- 1.7 Conclusions -- References -- 2: Camera Calibration Techniques for Accurate Measurement Underwater -- 2.1 Introduction -- 2.1.1 Historical Context -- 2.1.2 Modern Systems and Applications -- 2.1.3 Calibration and Accuracy -- 2.2 Calibration Approaches -- 2.2.1 Physical Correction -- 2.2.2 Target Field Calibration -- 2.3 Calibration Algorithms -- 2.3.1 Calibration Parameters -- 2.3.2 Absorption of Refraction Effects -- 2.3.3 Geometric Correction of Refraction Effects -- 2.3.4 Relative Orientation -- 2.4 Calibration Reliability and Stability -- 2.4.1 Reliability Factors -- 2.4.2 Stability Factors -- 2.5 Calibration and Validation Results -- 2.5.1 Quality Indicators -- 2.5.2 Validation Techniques -- 2.5.3 Validation Results -- 2.6 Conclusions -- References -- 3: Legacy Data in 3D: The Cape Andreas Survey (1969-1970) and Santo António de Tanná Expeditions (1978-1979) -- 3.1 Introduction -- 3.2 Cape Andreas Expeditions -- 3.2.1 Wreck Sites with Ceramics -- 3.2.2 Anchor Sites and Individual Anchors -- 3.2.3 Reworking the Legacy Survey Data -- 3.2.4 Reworking the Legacy Photographic Data -- 3.2.5 Agisoft PhotoScan/Metashape -- 3.3 The Santo António de Tanná Shipwreck -- 3.3.1 Profile Recording -- 3.3.2 Trilateration Survey -- 3.3.3 Photographic Recording -- 3.3.4 Agisoft PhotoScan/Metashape -- 3.4 Conclusions -- References -- 4: Systematic Photogrammetric Recording of the Gnalić Shipwreck Hull Remains and Artefacts -- 4.1 Introduction -- 4.2 The Shipwreck of Gnalić -- 4.2.1 History of Research -- 4.2.2 The Ship -- 4.2.2.1 Historical Documents. , 4.2.2.2 Archaeological Sources -- 4.3 Systematic Photogrammetric Recording of Site and Finds -- 4.3.1 Trial Campaign 2012 -- 4.3.2 Research Campaign 2013 -- 4.3.2.1 Control Points and Multi-image Coverage of the Site -- 4.3.2.2 Image Processing, 3D Model, and Orthophoto Generation -- 4.3.2.3 GIS Analysis -- 4.3.3 Research Campaign 2014 -- 4.3.3.1 Local Coordinate System -- 4.3.3.2 Composite Models -- 4.3.3.3 GIS Analysis -- 4.3.3.4 Points-Based Deviation Analysis -- 4.3.4 Research Campaigns 2015 and 2016 -- 4.3.5 Mapping the Area of Archaeological Interest in 2017 -- 4.4 Timber and Artefact Recording -- 4.5 Virtual Reality Application -- 4.6 Automation of the Underwater Recording Process -- 4.7 Conclusions -- References -- 5: Underwater Photogrammetric Recording at the Site of Anfeh, Lebanon -- 5.1 Introduction -- 5.1.1 Context of the Research -- 5.1.2 Recorded Archaeological Cultural Heritage at Anfeh -- 5.1.3 Methodology -- 5.2 Underwater Photography -- 5.2.1 Equipment -- 5.2.2 Data Collection -- 5.2.2.1 Data Collection with CanonG15 -- 5.2.2.2 Data Collection with Canon EOS 70D -- 5.2.2.3 Data Collection with Sony DSC-RX100 -- 5.2.3 Image processing -- 5.3 Multi-image Photogrammetry -- 5.3.1 Orthophotos -- 5.3.2 Export Adobe 3D PDFs -- 5.4 Archaeological Survey Results -- 5.4.1 Isolated Anchors -- 5.4.2 The Groups of Anchors -- 5.4.3 The Isolated Masonry Blocks -- 5.4.4 The Masonry Blocks in Groups -- 5.4.4.1 The North-Eastern Group -- 5.4.4.2 The North-Western Group -- 5.4.4.3 The South-Eastern Group -- 5.5 Accuracy -- 5.5.1 Accuracy of Georeferencing of the Survey -- 5.5.2 Accuracy of the Photogrammetric Survey -- 5.6 Challenges -- 5.7 Discussion and Conclusions -- References. , 6: Using Digital Visualization of Archival Sources to Enhance Archaeological Interpretation of the 'Life History' of Ships: The Case Study of HMCS/HMAS Protector -- 6.1 Introduction -- 6.2 Iconography and Maritime Archaeology -- 6.3 A Means for Interpretation: 3D Modelling of Archival Images -- 6.4 The Challenge of Digitally Modelling Archival Imagery -- 6.5 A Partial Solution -- 6.6 A Better Solution -- 6.7 Applying 3D Archival Imagery to Interpret Protector's 'Life History' -- 6.8 Discussion and Conclusions -- References -- 7: The Conservation and Management of Historic Vessels and the Utilization of 3D Data for Information Modelling -- 7.1 Introduction -- 7.2 Historic Vessel Conservation Management Practice -- 7.3 3D Survey for Historic Vessels -- 7.4 The Concept of Building Information Modelling (BIM) -- 7.5 Use of BIM in the Heritage Sector -- 7.6 HMS Victory (1765) and Information Modelling: A Case Study -- 7.7 Development of the VIM -- 7.8 Future Development of the VIM -- 7.9 Lessons from the VIM -- 7.10 Discussion -- 7.11 Conclusions -- References -- 8: A Procedural Approach to Computer-Aided Modelling in Nautical Archaeology -- 8.1 Introduction -- 8.2 Computer-Aided Modelling in Archaeology -- 8.3 Computer-Based Modelling in Archaeology -- 8.4 Computer Models -- 8.5 Procedural Modelling -- 8.6 Methodology -- 8.7 Approach -- 8.8 Hull Components Description -- 8.9 Conclusions and Future Work -- References -- 9: Deepwater Archaeological Survey: An Interdisciplinary and Complex Process -- 9.1 Introduction -- 9.1.1 The Archaeological Context -- 9.2 Underwater Survey by Photogrammetry -- 9.3 The Use of Ontologies -- 9.3.1 In Underwater Archaeology -- 9.3.2 Application in Nautical Archaeology -- 9.4 Artefact Recognition: The Use of Deep Learning -- 9.4.1 The Overall Process Using a Deep Learning Approach. , 9.4.2 The Proposed Convolution Neural Network -- 9.4.3 Classification Results -- 9.5 2D Representation: From Orthophoto to Metric Sketch -- 9.5.1 Style Transfer to Sketch the Orthophoto -- 9.5.2 From 3D Models to NPR: Non-photorealistic Rendering -- 9.6 Virtual Reality for the General Public -- 9.7 New 3D Technologies: The Plenoptic Approach -- 9.8 Conclusions -- References -- 10: Quantifying Depth of Burial and Composition of Shallow Buried Archaeological Material: Integrated Sub-bottom Profiling and 3D Survey Approaches -- 10.1 Introduction -- 10.2 Non-invasive Geophysical Measurements -- 10.3 Parametric SBP Surveys -- 10.3.1 In Situ Experimental Burial Survey -- 10.3.2 James Matthews Comparative In Situ Surveys -- 10.4 Results and Discussion -- 10.4.1 In Situ Experimental Burial Survey -- 10.4.2 James Matthews Comparative In Situ Wreck-Site Surveys -- 10.5 Future Surveys and Analyses -- 10.6 Conclusions -- References -- 11: Resolving Dimensions: A Comparison Between ERT Imaging and 3D Modelling of the Barge Crowie, South Australia -- 11.1 Introduction -- 11.2 Crowie's History, Context, Significance and Construction -- 11.2.1 History and Context -- 11.2.2 Significance -- 11.2.3 Construction -- 11.3 Geophysical Modelling -- 11.3.1 Electrical Resistivity Tomography (ERT) -- 11.3.2 Data Acquisition and Modelling -- 11.3.3 Data Processing and Results -- 11.4 Visual Model -- 11.5 Discussion -- 11.6 Conclusions -- References -- 12: HMS Falmouth: 3D Visualization of a First World War Shipwreck -- 12.1 Introduction -- 12.2 Background -- 12.3 Origins of the 3D Visualization of HMS Falmouth -- 12.4 Data Acquisition and Processing of the Ship Model -- 12.5 Publication of the 3D Visualization -- 12.6 Development Potential of 3D Visualization for Further Research and Public Engagement -- 12.7 Conclusions -- References. , 13: Beacon Virtua: A Virtual Reality Simulation Detailing the Recent and Shipwreck History of Beacon Island, Western Australia -- 13.1 Introduction -- 13.2 Simulation -- 13.2.1 Guided Tour -- 13.2.2 Technical Features -- 13.2.2.1 Island and Ocean -- 13.2.2.2 Buildings and Jetties -- 13.2.2.3 Graves and Coral Features -- 13.2.2.4 360° Photo Bubbles -- 13.2.2.5 Information Panels -- 13.2.2.6 Text Menu -- 13.2.2.7 Audio -- 13.2.2.8 Birds -- 13.2.2.9 Batavia Marker -- 13.3 Target Platforms -- 13.3.1 Desktop -- 13.3.2 WebGL -- 13.3.2.1 Head Mounted Displays -- 13.3.2.2 Large-Scale Immersive Displays -- 13.3.2.3 Exhibition Version -- 13.3.2.4 Videos -- 13.4 Multiple Target Platforms -- 13.5 Navigation -- 13.6 Dynamic Text -- 13.7 3D User Interface -- 13.8 Discussion -- 13.9 Future Work and Conclusions -- References -- 14: Integrating Aerial and Underwater Data for Archaeology: Digital Maritime Landscapes in 3D -- 14.1 Introduction -- 14.2 Maritime Archaeological Theory and Integrated Cultural Landscapes -- 14.3 Aerial Archaeology -- 14.4 Technical Challenges: Shallow Water and Intertidal Zones -- 14.5 Underwater Photogrammetry -- 14.6 Digital Maritime Landscapes in 3D: Case Studies -- 14.6.1 The Intertidal Zone -- 14.6.2 Nearshore Historic Shipwrecks -- 14.6.3 Deep Time and the Integrated Maritime Landscape -- 14.7 3D GIS -- 14.8 Digital 'Realities' -- 14.9 Conclusions -- References -- Index.
    Weitere Ausg.: Print version: McCarthy, John K. 3D Recording and Interpretation for Maritime Archaeology Cham : Springer International Publishing AG,c2019 ISBN 9783030036348
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz