Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9949602270002882
    Umfang: 1 online resource (841 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030426033
    Serie: Springer Series in Materials Science Series ; v.298
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- 1 Ceramic Casting Technologies for Fine and Coarse Grained TRIP-Matrix-Composites -- 1.1 Introduction -- 1.2 Experimental Details -- 1.2.1 Raw Materials -- 1.2.2 Sample Preparation -- 1.2.3 Characterization of the Composite Materials -- 1.3 Results and Discussion -- 1.3.1 Development of TRIP-Matrix Composites via Powder Metallurgy -- 1.3.2 Development of TRIP-Matrix Composites via Metal Melt Infiltration of Ceramic Preforms -- 1.3.3 Development of Ceramic Matrix Composites via Powder Metallurgy -- 1.3.4 Development of Ceramic Components Using Alternative Technologies -- 1.4 Summary -- References -- 2 Design of High Alloy Austenitic CrMnNi Steels Exhibiting TRIP/TWIP Properties -- 2.1 Introduction -- 2.2 Experimental Methods -- 2.3 Austenitic CrMnNi Cast Steels -- 2.3.1 Constitution and Special Methods -- 2.3.2 Initial Microstructures of 16-7-3/6/9 Steels -- 2.3.3 Mechanical Properties of 16-7-3/6/9 Steels -- 2.3.4 Conclusions for the 1st Generation Steels -- 2.4 Austenitic CrMnNi-C-N Cast Steels -- 2.4.1 Constitution and Special Methods -- 2.4.2 Initial Cast Microstructures of the Steel Series -- 2.4.3 Austenite ↔ ατ̔̈“«”“·-Martensite Transformation Behavior -- 2.4.4 Mechanical Properties of Cr15NC10.X Steel Series -- 2.4.5 Mechanical Properties of Cr19NC15.X Steel Series -- 2.4.6 Conclusions for the 2nd Generation Steels -- 2.5 Q& -- P Processing of Austenitic CrMnNi-C-N Cast Steels -- 2.5.1 Constitution and Special Methods -- 2.5.2 Q& -- P Processing of Cr15NC12.16 Steel -- 2.5.3 QDP Processing of Cr19NC14.16 Steel -- 2.5.4 Conclusions for the 3rd Generation Steels -- 2.6 Conclusions -- References -- 3 Tailoring of Thermophysical Properties of New TRIP/TWIP Steel Alloys to Optimize Gas Atomization -- 3.1 Surface Tension and Density of the TRIP/TWIP Steels. , 3.2 Control of Atomization by the Thermophysical Properties of the Atomized Media -- 3.2.1 Investigation of the Effect of Surface Tension on Inert Gas Atomization -- 3.2.2 Effect of the Viscosity of Liquid Metal on the Inert Gas Atomization -- 3.3 Density of Nitrogen Alloyed Steels -- 3.3.1 Development of Density Measurement Cell -- 3.3.2 Atomization of Nitrogen Alloyed Steels -- 3.4 Analysis of Gas Atomization Process -- 3.4.1 Temperatures of the Particles -- 3.4.2 Image Processing -- 3.4.3 Velocity of the Particles -- 3.4.4 New Geometry and a Set-Up for an Inert Gas Atomization -- 3.5 Conclusions -- References -- 4 Production of Ceramic Steel Composite Castings Through Infiltration -- 4.1 Introduction -- 4.2 Thermal and Chemical Interactions Between Casted High Alloyed TRIP-Steel and Molding Systems -- 4.2.1 Solidification Time Depending on the Molding Sand -- 4.2.2 Chemical Interactions Between Steel and Mold -- 4.3 Influence of the Ceramic Preheating Temperature and Phosphorus as Alloying Element on the Infiltration Quality -- 4.4 Wear Properties of ZrO2-Based Metal-Matrix-Composites -- 4.4.1 Three-Body Abrasive Test -- 4.4.2 Microscopy of the MMC -- 4.5 Infiltration of Loose Ceramic Particles with Steel and Their Wear Behavior -- 4.5.1 Static Infiltration of Loose Ceramic Particles -- 4.5.2 Dynamic Infiltration of Loose Ceramic Particles -- 4.6 Conclusions -- References -- 5 Ceramic Extrusion Technologies for Fine Grained TRIP Matrix Composite Materials -- 5.1 Introduction -- 5.2 Experimental Details -- 5.2.1 Plastic Processing of Steel/Zirconia Composite Materials -- 5.2.2 Composite Variants with Additions of Zirconia and/or Aluminium Titanate -- 5.2.3 Innovative Joining of Powder Metallurgically Processed TRIP/TWIP Steel Materials -- 5.3 Results and Discussion -- 5.3.1 Characteristics of Materials Prepared via Plastic Processing. , 5.3.2 Effect of Zirconia and Aluminium Titanate on the Mechanical Properties of Composite Materials -- 5.3.3 Joining of Zirconia Reinforced MMCs -- 5.4 Conclusions -- References -- 6 Understanding of Processing, Microstructure and Property Correlations During Different Sintering Treatments of TRIP-Matrix-Composites -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.3 Results -- 6.3.1 Conventional Sintering -- 6.3.2 Resistance Sintering -- 6.3.3 Hot Pressing -- 6.4 Conclusions -- References -- 7 Understanding of Processing, Microstructure and Property Correlations for Flat Rolling of Presintered TRIP-Matrix Composites -- 7.1 Introduction -- 7.2 Materials and Methods -- 7.3 Results -- 7.3.1 Heating and Dissolution of Precipitates -- 7.3.2 Strain Hardening and Its Partitioning Between the Present Phases of the Composite -- 7.3.3 Strain Softening -- 7.3.4 Formability -- 7.3.5 Material Flow During Rolling -- 7.4 Conclusions -- References -- 8 Powder Forging of Presintered TRIP-Matrix Composites -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.3 Results -- 8.3.1 Determination of Material- and Process-Dependent Parameters -- 8.3.2 Determination of Shrinkage -- 8.3.3 Poisson's Ratio as a Function of Density -- 8.3.4 Relationship Between Young's Modulus and Density -- 8.3.5 Oxidation Behavior -- 8.3.6 Process Map Extension for Compressible and Graded Materials -- 8.4 Model Experiments on Powder Forging -- 8.4.1 Visioplastic Method -- 8.4.2 Metallographic Examination -- 8.4.3 Formation of the Interfaces of Phases -- 8.4.4 Mechanical Properties -- 8.4.5 Shear Strength of the Layers with a Graded Layer Structure -- 8.5 Conclusions -- References -- 9 Synthesis of TRIP Matrix Composites by Field Assisted Sintering Technology-Challenges and Results -- 9.1 Introduction -- 9.2 Experimental Methods -- 9.3 Results and Discussion. , 9.3.1 Influence of the Composite Powder on the Microstructural Evolution and Mechanical Properties of the Sintered Composite -- 9.3.2 Influence of Sintering Parameters on the Microstructure and the Mechanical Properties of the Sintered Composite -- 9.3.3 Sintering of Functionally Graded Materials (FGM) by FAST -- 9.4 Conclusions -- References -- 10 Electron Beam Technologies for the Joining of High Alloy TRIP/TWIP Steels and Steel-Matrix Composites -- 10.1 Introduction -- 10.2 Materials and Methodology -- 10.2.1 Electron Beam Facility and Temperature Measurements -- 10.2.2 Base Materials -- 10.2.3 Microstructural Characterization -- 10.2.4 Mechanical Characterization -- 10.2.5 Non-destructive Testing -- 10.2.6 Electron Beam Welding of Similar Joints Without Reinforcement -- 10.2.7 Electron Beam Welding of Similar Joints with Reinforcement -- 10.3 Electron Beam Welding of Dissimilar Joints with TWIP-Matrix Composites -- 10.3.1 Typical Microstructure of the Welded Zone -- 10.3.2 Influence of Beam Parameters on the Weld Quality -- 10.3.3 Verification of Welding Defects -- 10.3.4 Mechanical Characterization -- 10.4 Electron Beam Brazing of TWIP-Matrix Composites -- 10.4.1 Macroscopic Phenomena -- 10.4.2 Microscopic Characterization -- 10.4.3 Tensile Tests -- 10.5 Summary -- References -- 11 Microstructure Aspects of the Deformation Mechanisms in Metastable Austenitic Steels -- 11.1 Introduction -- 11.2 Fundamental Microstructure Defects, Their Activity and Configurations in Austenitic Steels -- 11.2.1 Dislocations and Stacking Faults in fcc Materials -- 11.2.2 Dislocations and Stacking Faults in Austenitic Steels, Their Configurations and Interactions -- 11.2.3 Arrangement of the Stacking Faults in Austenite: Formation of ε-Martensite and Twinned Austenite -- 11.3 Formation of ατ̔̈“«”“·-Martensite. , 11.4 Quantification of Microstructure Features and Microstructure Defects in TRIP/TWIP Steels, Determination of the Stacking Fault Energy in Austenite -- 11.4.1 Experimental Methods for Quantitative Microstructure Analysis -- 11.4.2 Methods for Determination of the Stacking Fault Energy (SFE) in fcc Crystals -- 11.4.3 In Situ Diffraction Studies on TRIP/TWIP Steels During Plastic Deformation -- 11.5 Interplay of Deformation Mechanisms, Development of Deformation Microstructure -- 11.5.1 Interaction of Microstructure Defects in Deformation Bands -- 11.5.2 Orientation Dependence of the Stacking Fault and Deformation Band Formation -- 11.5.3 Dependence of the Deformation Mechanisms on Local Chemical Composition and Temperature -- 11.6 Conclusions -- References -- 12 Investigations on the Influence of Strain Rate, Temperature and Reinforcement on Strength and Deformation Behavior of CrMnNi-Steels -- 12.1 Introduction -- 12.2 High Strain Rate Deformation of Austenitic High-Alloy TRIP/TWIP Steel -- 12.2.1 Processing and Experimental Methods -- 12.2.2 Approaches to Rate-Dependent Constitutive Modeling -- 12.2.3 Microstructural Deformation Mechanisms at High Strain Rates -- 12.3 Honeycomb-Like Structures Made from TRIP-Steel and TRIP-Matrix-Composites -- 12.3.1 Deformation Behavior of Honeycomb-Like Structures -- 12.3.2 Selection of Cell Wall Materials -- 12.4 Conclusions -- References -- 13 Cyclic Deformation and Fatigue Behavior of Metastable Austenitic Steels and Steel-Matrix-Composites -- 13.1 Introduction -- 13.2 Methodology -- 13.2.1 Materials -- 13.2.2 Manufacturing Methods -- 13.2.3 Fatigue Testing -- 13.2.4 Analytical Methods -- 13.3 Influence of Chemical Composition on the Fatigue Behavior -- 13.3.1 Cyclic Deformation Behavior -- 13.3.2 Microstructure After Cyclic Deformation -- 13.3.3 Fatigue Life. , 13.4 Influence of the Manufacturing Method on the Fatigue Behavior.
    Weitere Ausg.: Print version: Biermann, Horst Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites Cham : Springer International Publishing AG,c2020 ISBN 9783030426026
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz