Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    UID:
    almahu_9949602274802882
    Format: 1 online resource (461 pages)
    Edition: 1st ed.
    ISBN: 9783030161187
    Series Statement: Particle Acceleration and Detection Series
    Note: Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Glossary of Terms -- Part I: Introduction -- Chapter 1: Superconducting Magnets for Accelerators -- 1.1 Circular Accelerators and Superconducting Magnets -- 1.2 Accelerator Magnet Design and Operation -- 1.2.1 Magnetic Design -- 1.2.2 Field Quality -- 1.2.3 Mechanical Design -- 1.2.4 Operation Temperature, Fields and Margins -- 1.2.5 Magnet Thermal Stabilization -- 1.2.6 Quench Protection -- 1.3 Nb-Ti Accelerator Magnets and Technologies -- 1.3.1 Nb-Ti Composite Wire -- 1.3.2 Nb-Ti Accelerator Magnet Designs and Technologies -- 1.4 Next Generation of Superconducting Accelerator Magnets -- 1.4.1 Nb3Sn Composite Wires -- 1.4.2 Design Issues of Nb3Sn Accelerator Magnets -- 1.4.3 Nb3Sn Magnet Technology -- 1.4.4 Magnet Performance Test -- References -- Chapter 2: Nb3Sn Wires and Cables for High-Field Accelerator Magnets -- 2.1 Introduction -- 2.2 Development of Nb3Sn from the 1960s to the 1990s -- 2.2.1 Nb3Sn Development from the 1960s to the 1970s -- 2.2.2 Nb3Sn Development from the 1980s to the 1990s -- 2.3 Modern High-Jc Nb3Sn Composite Wires -- 2.3.1 Target Parameters of Nb3Sn Wires for HEP -- 2.3.2 PIT Nb3Sn Wires -- 2.3.3 IT Nb3Sn Wires -- 2.3.4 Main Properties of Nb3Sn Composite Wires -- 2.3.4.1 Critical Current Density Jc and Critical Current Ic -- 2.3.4.2 Flux Jump Instabilities -- 2.3.4.3 Nb3Sn Wire Magnetization -- 2.3.4.4 Cu Matrix RRR -- 2.4 Rutherford Cables Based on PIT and RRP Wires -- 2.4.1 Cable Design and Fabrication -- 2.4.2 Cable Size Changes after Reaction -- 2.4.3 Cable Performance Parameters -- 2.4.3.1 Cable Critical Current Ic and Flux Jump Instabilities -- 2.4.3.2 Effect of Strand Plastic Deformation in Cables -- 2.4.3.3 Cable RRR -- 2.4.3.4 Effect of Transverse Pressure -- 2.4.3.5 Interstrand Resistance -- 2.5 Conclusion. , Appendix 1-Wire and Cable Parameterizations -- Cable Aspect Ratio -- Cable Cross-Section -- Pitch or Transposition Angle θ -- Cable Packing Factor PF -- Cable Edge and Width Deformations Re, Rw -- Critical Current Density -- Engineering Current Density -- Magnetization and AC Losses -- References -- Chapter 3: Nb3Sn Accelerator Magnets: The Early Days (1960s-1980s) -- 3.1 Introduction -- 3.2 Nb3Sn Accelerator Magnets in the 1960s -- 3.2.1 First Nb3Sn Quadrupoles at BNL -- 3.2.2 First Nb3Sn Dipoles for Synchrotron at BNL -- 3.2.3 Nb3Sn Magnet Design Based on Braided Cable -- 3.3 Nb3Sn Magnet R& -- D in the 1970s -- 3.4 Nb3Sn R& -- D in the 1980s -- 3.4.1 The Nb3Sn Dipole at CEA-Saclay, 1983 -- 3.4.1.1 Conductor -- 3.4.1.2 Magnet Design and Manufacturing -- 3.4.1.3 Test Results -- 3.4.2 Nb3Sn Technology Development at CERN -- 3.4.2.1 Conductor -- 3.4.2.2 Coil Fabrication Technology -- 3.4.2.3 Nb3Sn Quadrupole Design and Fabrication -- 3.4.2.4 Quadrupole Test Results -- 3.4.3 Nb3Sn Dipole at LBNL -- 3.4.3.1 Main Design Concept -- 3.4.3.2 Conductor -- 3.4.3.3 Magnet Construction -- 3.4.3.4 Test Results -- 3.4.4 Nb3Sn Magnet R& -- D at KEK, Japan -- 3.4.4.1 KEK-Toshiba Small-Scale Nb3Sn Dipole (1980) -- 3.4.4.2 The KEK Effort Toward a 10 T Dipole -- 3.4.4.3 R& -- D Racetrack as Intermediate Step -- 3.4.4.4 Double-Layer Dipole Test -- 3.5 Nb3Sn Dipole for a Cable Test Facility at BNL (1991) -- 3.5.1 Conductor -- 3.5.2 Coil Fabrication -- 3.5.3 Magnet Assembly -- 3.5.4 Test Results -- 3.6 Conclusion -- References -- Part II: Cos-Theta Dipole Magnets -- Chapter 4: CERN-ELIN Nb3Sn Dipole Model -- 4.1 Introduction -- 4.2 The CERN-ELIN Collaboration Agreement -- 4.3 Magnet Design Concept -- 4.4 Superconducting Strands and Cables -- 4.5 Magnetic and Mechanical Design -- 4.5.1 Magnetic Design -- 4.5.2 Mechanical Design. , 4.6 Coil Manufacture and Magnet Assembly -- 4.7 Mirror Coil Test Facility -- 4.8 Tests and Performance -- 4.9 Coil with Powder-in-Tube Cables -- 4.10 Conclusion -- References -- Chapter 5: The UT-CERN Cos-theta LHC-Type Nb3Sn Dipole Magnet -- 5.1 Introduction -- 5.2 Magnet Design -- 5.2.1 Electromagnetic Design -- 5.2.2 Conductor Choice and Parameters -- 5.2.3 Mechanical Design -- 5.3 Technology Development and Magnet Manufacturing -- 5.3.1 Cable Degradation Studies -- 5.3.2 Mechanical Model -- 5.3.3 Cable Insulation -- 5.3.4 Coil Wedges and End Spacer Design -- 5.3.5 Coil Winding -- 5.3.6 Coil Reaction Heat Treatment -- 5.3.7 Electrical Connection Between the Coils -- 5.3.8 Impregnation -- 5.3.9 Coil Assembly and Collaring -- 5.3.10 Collared Coil Yoking and Skinning -- 5.3.11 Instrumentation and Quench Heaters -- 5.4 Test Results -- 5.4.1 Magnet Training -- 5.4.2 Magnetic Measurements -- 5.4.3 Losses During Ramping -- 5.4.4 Ramp Rate Sensitivity -- 5.4.5 Temperature Development -- 5.4.6 Quench Propagation Velocity -- 5.5 Conclusion -- References -- Chapter 6: LBNL Cos-theta Nb3Sn Dipole Magnet D20 -- 6.1 Introduction -- 6.2 Magnet Design -- 6.2.1 Design Approach -- 6.2.2 Magnetic Design Optimization -- 6.2.3 Conductor Development -- 6.2.4 Mechanical Design and Analysis -- 6.2.5 D20 Final Design -- 6.3 Magnet Fabrication -- 6.3.1 Coil Components -- 6.3.2 Coil Insulation and Reaction -- 6.3.3 Splice Joints -- 6.3.4 Coil Epoxy Impregnation -- 6.3.5 Quench Protection -- 6.3.6 Magnet Assembly -- 6.4 Test Results and Discussion -- 6.4.1 Training and Operation -- 6.4.2 Magnetic Measurements -- 6.4.3 Discussion -- 6.5 Conclusion -- References -- Chapter 7: Cos-theta Nb3Sn Dipole for a Very Large Hadron Collider -- 7.1 Introduction -- 7.2 Design Studies -- 7.3 Magnet Design and Parameters -- 7.3.1 Single-Aperture Design and Parameters. , 7.3.1.1 Magnetic Analysis -- 7.3.1.2 Mechanical Analysis -- 7.3.1.3 Quench Protection -- 7.3.2 Twin-Aperture Designs and Parameters -- 7.4 Fabrication Technology -- 7.4.1 Mechanical Model -- 7.4.2 Technological Model (HFDA01) -- 7.4.2.1 Strand and Cable -- 7.4.2.2 Coil Winding and Curing -- 7.4.2.3 Coil Reaction -- 7.4.2.4 Splice Joints -- 7.4.2.5 Epoxy Impregnation -- 7.4.2.6 Model Assembly and Instrumentation -- 7.5 Short Models -- 7.5.1 Short Dipole Models -- 7.5.1.1 HFDA02 -- 7.5.1.2 HFDA03 -- 7.5.1.3 HFDA04 -- 7.5.1.4 HFDA05 -- 7.5.1.5 HFDA06 -- 7.5.1.6 HFDA07 -- 7.5.1.7 Dipole Mirror Magnets -- 7.5.1.8 HFDM01 -- 7.5.1.9 HFDM02 -- 7.5.1.10 HFDM03 -- 7.5.1.11 HFDM04, HFDM05 -- 7.5.1.12 HFDM06 -- 7.5.1.13 LM1 (HFDM07) -- 7.5.1.14 LM2 (HFDM08) -- 7.6 Dipole Model Tests -- 7.6.1 Quench Performance -- 7.6.2 Field Quality -- 7.7 Dipole Mirror Tests -- 7.7.1 Conductor and Coil Technology Study -- 7.7.2 Technology Scale-Up -- 7.8 Conclusion -- References -- Chapter 8: Nb3Sn 11 T Dipole for the High Luminosity LHC (FNAL) -- 8.1 Introduction -- 8.2 Magnet Design Concept -- 8.2.1 Design Considerations -- 8.2.2 Mechanical Designs and Analysis -- 8.2.3 Magnetic Design and Analysis -- 8.2.4 Magnet Design Parameters -- 8.2.5 Quench Protection -- 8.3 11 T Dipole R& -- D -- 8.3.1 Model Design and Fabrication -- 8.3.1.1 Nb3Sn Wire and Cable -- 8.3.1.2 Coil -- 8.3.1.3 Ground Insulation and Quench Protection Heaters -- 8.3.1.4 Collared Coil -- 8.3.1.5 Short Dipole Models -- Single-Aperture Models -- Twin-Aperture Model -- 8.3.2 Magnet Test -- 8.3.2.1 Quench Performance -- Single-Aperture Dipoles and Mirror Models -- Twin-Aperture Model -- 8.3.2.2 Magnetic Measurements -- 8.3.2.3 Quench Protection Studies -- Quench Temperature Measurements -- Longitudinal Quench Propagation Velocity -- Radial Quench Propagation -- 8.4 FNAL 11 T Dipole R& -- D Summary. , References -- Chapter 9: Nb3Sn 11 T Dipole for the High Luminosity LHC (CERN) -- 9.1 Introduction -- 9.1.1 History of the 11 T Project -- 9.1.2 Present Scope of the 11 T Project -- 9.2 Magnet Design -- 9.2.1 Design Constraints -- 9.2.2 Basic Features -- 9.2.3 Conductor Choice and Nominal Dimensions -- 9.2.4 Magnetic Design -- 9.2.5 Mechanical Design -- 9.3 11 T Dipole Development at CERN -- 9.3.1 CERN Model Design and Fabrication Procedure -- 9.3.1.1 Conductor for the R& -- D Phase and for Series Production -- 9.3.1.2 Insulation -- 9.3.1.3 Coil Technology -- 9.3.1.4 Ground Insulation and Quench Protection Heaters -- 9.3.1.5 Collared Coil -- 9.3.1.6 Short Dipole Models -- Single-Aperture Models -- Two-In-One-Aperture Dipole -- 9.3.2 Magnet Test -- 9.3.3 Quench Performance -- 9.3.3.1 Model Magnet Limits -- 9.3.3.2 Model Magnet Training -- 9.3.3.3 Training after Thermal Cycle -- 9.3.3.4 Erratic Quenches -- 9.3.3.5 Detraining/Degradation During Power -- 9.3.3.6 Holding Current Tests -- 9.3.3.7 Temperature Dependence -- 9.3.3.8 Ramp Rate Dependence -- 9.3.3.9 Splices -- 9.3.3.10 Magnetic Measurements -- 9.3.4 Design Revisions by the 11 T Task Force -- 9.3.5 Full-Scale Prototype -- 9.3.6 Series Production -- 9.4 Conclusions -- References -- Part III: Block-Type Dipole Magnets -- Chapter 10: Block-Type Nb3Sn Dipole R& -- D at Texas A& -- M University -- 10.1 Introduction -- 10.2 R& -- D Program and Approach -- 10.2.1 Stress Management -- 10.2.2 Pre-stressing the Structure -- 10.2.3 Flux Plate Suppression of Persistent Magnetization Fields -- 10.3 TAMU1: Single-Shell Nb-Ti Model Dipole -- 10.3.1 Magnet Manufacture -- 10.3.2 Testing TAMU1 -- 10.4 TAMU2: Mirror-Geometry Nb3Sn Dipole -- 10.4.1 Laminar Springs -- 10.4.2 Mica Paper Shear Release -- 10.4.3 Thermal Contraction Compensation Using Ti Blocks -- 10.4.4 Stress Transducers. , 10.4.5 Coil Fabrication.
    Additional Edition: Print version: Schoerling, Daniel Nb3Sn Accelerator Magnets Cham : Springer International Publishing AG,c2019 ISBN 9783030161170
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages