Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge, MA :Academic Press,
    UID:
    almahu_9949669309902882
    Format: 1 online resource (488 pages)
    Edition: Second edition.
    ISBN: 0-443-15475-9
    Note: Front Cover -- Spectroscopic Measurement -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Spectroscopic techniques -- 1.2 Overview of the book -- 1.3 How to use this book -- 1.4 Concluding remarks and warnings -- References -- 2 A brief review of statistical mechanics -- 2.1 Introduction -- 2.2 The Maxwellian velocity distribution -- 2.2.1 Velocity distributions -- 2.2.2 Average molecular pressure -- 2.2.3 Translational energy and the Boltzmann constant -- 2.2.4 The Maxwellian distribution -- 2.3 The Boltzmann population distribution -- 2.3.1 Microstates and macrostates -- 2.3.2 Bosons and fermions -- 2.3.3 Energy accounting -- 2.3.4 Boltzmann statistics -- 2.4 Molecular energy distributions -- 2.4.1 Electronic populations -- 2.4.2 Vibrational populations -- 2.4.3 Rotational populations -- 2.4.4 Coupled modes -- 2.5 Example distributions -- 2.6 Conclusions -- References -- 3 The equation of radiative transfer -- 3.1 Introduction -- 3.2 Some definitions -- 3.2.1 Geometric terms -- 3.2.2 Spectral terms -- 3.2.3 Relationship to simple laboratory measurements -- 3.3 Development of the ERT -- 3.4 Implications of the ERT -- 3.4.1 Rate equations -- 3.4.2 Saturation -- 3.4.3 Absorption and emission -- 3.4.4 Black and gray body behavior -- 3.5 Photon statistics -- 3.5.1 The Planck distribution -- 3.6 Conclusions -- References -- 4 Optical electromagnetics -- 4.1 Introduction -- 4.2 Maxwell's equations in vacuum -- 4.2.1 Gauss' electric law -- 4.2.2 Gauss' magnetic law -- 4.2.3 Faraday's law of induction -- 4.2.4 Ampere's law of induction -- 4.2.5 Maxwell's equations -- 4.3 Basic conclusions from Maxwell's equations -- 4.3.1 The wave equation -- 4.3.2 Plane waves -- 4.3.3 Transverse electromagnetic waves -- 4.4 Material interactions -- 4.5 Brief mention of nonlinear effects -- 4.6 Irradiance. , 4.6.1 An example link between electromagnetism and the ERT -- 4.7 Conclusions -- References -- 5 The Lorentz atom -- 5.1 Classical dipole oscillator -- 5.2 Wave propagation through transmitting media -- 5.3 Dipole emission -- 5.3.1 Dipole emission formalism -- 5.3.2 Dipole radiation patterns -- 5.4 Conclusions -- References -- 6 Classical Hamiltonian dynamics -- 6.1 Introduction -- 6.2 Overview of Hamiltonian dynamics -- 6.3 Hamiltonian dynamics and the Lorentz atom -- 6.4 Conclusions -- References -- 7 An introduction to quantum mechanics -- 7.1 Introduction -- 7.2 Historical perspective -- 7.2.1 The Planck distribution -- 7.2.2 The photoelectric and Compton effects -- 7.2.3 Orbital theories and spectra -- 7.2.4 deBroglie waves -- 7.2.5 Schrödinger's equation -- 7.2.6 Born's probability hypothesis -- 7.2.7 Heisenberg uncertainty -- 7.2.8 An introduction to commutators -- with a connection between commutation, Heisenberg, and Schrödinger -- 7.2.9 Synopsis -- 7.3 Additional components of quantum mechanics -- 7.3.1 Material plane waves -- 7.3.2 The time-dependent Schrödinger equation -- 7.3.3 Some additional mathematics -- 7.3.4 Correspondence -- 7.3.5 Superposition -- 7.3.6 Position revisited -- 7.3.7 Measurements and compatible observables -- 7.3.8 Ehrenfest theorem -- 7.4 Postulates of quantum mechanics -- 7.5 Quantum dynamics -- 7.5.1 Quantum mechanical "pictures" -- 7.5.2 The time evolution operator -- 7.5.3 Time-dependent perturbation theory -- 7.5.4 The Heisenberg equation of motion -- 7.5.5 The undamped density matrix equations -- 7.5.6 A simple example -- 7.6 Conclusions -- References -- 8 Atomic spectroscopy -- 8.1 Introduction -- 8.2 The one-electron atom -- 8.2.1 Definition of ̂V -- 8.2.2 Approach to the Schrödinger equation -- 8.2.3 z-Component of angular momentum -- 8.2.4 Magnitude of the total orbital angular momentum. , 8.2.5 Energy and the full Hamiltonian -- 8.2.6 Introduction to selection rules and notation -- 8.2.7 Magnetic moment -- 8.2.7.1 Zeeman effect -- 8.2.7.2 Spin -- 8.2.8 Selection rules, degeneracy, and notation -- 8.3 Multi-electron atoms -- 8.3.1 Approximation methods -- 8.3.1.1 Hydrogen-like atoms -- 8.3.1.2 Hartree-Fock SCF -- 8.3.2 The Pauli principle and spin -- 8.3.2.1 Electron spin -- 8.3.2.2 Nuclear spin -- 8.3.3 The periodic table -- 8.3.4 Angular momentum coupling -- 8.3.5 Selection rules, degeneracy, and notation -- 8.4 Conclusion -- References -- 9 Molecular spectroscopy -- 9.1 Introduction -- 9.2 Diatomic molecules -- 9.2.1 Approach to the Schrödinger equation -- 9.2.2 The rigid rotator -- 9.2.3 The harmonic oscillator -- 9.2.4 Rotation-vibration spectra and corrections to simple models -- 9.2.5 Anharmonicity -- 9.2.6 Centrifugal distortion in rotation -- 9.2.7 Vibration-rotation interaction -- 9.2.8 Combined, corrected ro-vibrational energies -- 9.2.9 Parity -- 9.2.10 A review of ro-vibrational molecular selection rules -- 9.2.11 Electronic transitions -- 9.2.12 Building up electronic states -- 9.2.13 Electron spin -- 9.2.14 Nuclear spin -- 9.2.15 Electronic states and coupling -- 9.2.16 Electronic spectroscopy -- 9.2.17 Selection rules, degeneracy, and notation -- 9.2.18 Example case: OH A2Σ+X2Π -- 9.2.19 The A2Σ+ excited state -- 9.2.20 The X2Π ground state -- 9.3 Polyatomic molecules -- 9.3.1 Symmetry and point groups -- 9.3.2 σ symmetry -- 9.3.3 i symmetry -- 9.3.4 Cp symmetry -- 9.3.5 Sp symmetry -- 9.3.6 Point groups -- 9.3.7 Rotation of polyatomic molecules -- 9.3.8 Linear polyatomic molecules -- 9.3.9 Spherical top molecules -- 9.3.10 Symmetric top molecules -- 9.3.11 Asymmetric top molecules -- 9.3.12 Vibrations of polyatomic molecules -- 9.3.13 Electronic structure -- 9.4 Conclusions -- References -- 10 Resonance response. , 10.1 Introduction -- 10.2 Einstein coefficients -- 10.2.1 Franck-Condon and Hönl-London factors -- 10.3 Oscillator strengths -- 10.4 Absorption cross-sections -- 10.5 Band oscillator strengths -- 10.6 Conclusions -- References -- 11 Line broadening -- 11.1 Introduction -- 11.2 A spectral formalism -- 11.2.1 Statistics of random variables -- 11.2.2 Statistics of random processes -- 11.2.3 Power spectral densities -- 11.3 General description of optical spectra -- 11.3.1 Spectral density -- 11.3.2 Wiener-Khinchine relation -- 11.3.3 Line profiles -- 11.4 Homogeneous broadening -- 11.5 Inhomogeneous broadening -- 11.6 The Voigt profile -- 11.7 Collisional narrowing -- 11.8 Further details on collisional broadening -- 11.8.1 Collisional models -- 11.8.2 Isolated lines and the MEG model -- 11.8.3 Line mixing -- 11.9 Observations and conclusions -- References -- 12 The density matrix equations -- 12.1 Introduction -- 12.2 Development of the DME -- 12.2.1 Development of the damped DME -- 12.3 Interaction with an electromagnetic field -- 12.3.1 A simple example -- 12.3.2 Inclusion of Doppler broadening -- 12.3.3 A linear system of equations -- 12.4 Multiple levels and polarization in the DME -- 12.5 Two-level DME in the steady-state limit -- 12.6 The optical Bloch equations -- 12.7 Conclusions -- References -- 13 Polarization -- 13.1 Introduction -- 13.2 Polarization of the resonance response -- 13.3 Absorption and polarization -- 13.4 Polarized radiant emission -- 13.5 Photons and polarization -- 13.6 Conclusions -- References -- 14 Rayleigh and Raman scattering -- 14.1 Introduction -- 14.2 Polarizability -- 14.2.1 Direction cosines and Euler angles -- 14.2.2 Space-fixed polarizability ellipsoid -- 14.2.3 Space averages -- 14.3 Classical molecular scattering -- 14.4 Rayleigh scattering -- 14.4.1 Space-fixed molecule -- 14.4.2 Space averages. , 14.4.3 Rayleigh line shapes -- 14.5 Raman scattering -- 14.5.1 Quantum polarizability -- 14.6 Vibrational Raman -- 14.6.1 Vibrational amplitude coefficients -- 14.6.2 Vibrational selection rules -- 14.6.3 Vibrational Raman scattering from a space-fixed molecule -- 14.6.4 Vibrational Raman scattering from a space-averaged molecule -- 14.6.5 Vibrational Raman spectra -- 14.7 Rotational and rotational-vibrational Raman -- 14.7.1 Rotational and ro/vibrational Raman amplitudes -- 14.7.2 Rotational selection rules -- 14.7.3 More on ro/vibrational amplitudes -- 14.7.4 Vibration-rotation interaction -- 14.7.5 Ro/vibrational Raman spectra -- 14.8 Raman lineshapes -- 14.9 Raman flowfield measurements -- 14.10 Conclusions -- References -- 15 Nonlinear optics: coherent anti-Stokes Raman spectroscopy -- 15.1 Introduction -- 15.2 Introduction to nonlinear optics and CARS -- 15.2.1 Phase matching -- 15.3 Material polarization of CARS -- 15.3.1 Spectral treatment for PCARS -- 15.3.2 The linear susceptibility -- 15.3.3 The second-order terms -- 15.3.4 The third-order susceptibility -- 15.3.5 The nature of χCARS and the CARS signal -- 15.3.6 Time domain treatment for PCARS -- 15.4 Additional issues -- 15.4.1 Nonresonant background -- 15.4.2 Long- vs. short-pulses and laser spectra -- 15.4.3 Revivals -- 15.4.4 Line broadening in CARS -- 15.5 Conclusions -- References -- A Constants -- B Nomenclature -- C Units -- References -- D Regularly used Dirac mathematics -- D.1 Dirac bra ket notation -- D.2 Operators -- D.3 Time evolution operator and trace -- Index -- Back Cover.
    Additional Edition: Print version: Linne, Mark A. Spectroscopic Measurement San Diego : Elsevier Science & Technology,c2024 ISBN 9780443154744
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages