UID:
almahu_9949697644602882
Format:
1 online resource (780 pages) :
,
illustrations (some color), tables.
ISBN:
0-08-100292-0
,
0-08-100293-9
Series Statement:
Developments in Clay Science, Volume 7
Note:
Front Cover -- Nanosized Tubular Clay Minerals: Halloysite and Imogolite -- Copyright -- Dedication -- Contents -- Contributors -- Acknowledgements -- Chapter 1: General Introduction -- References -- Part I: Geology and Mineralogy of Nanosized Tubular Clay Minerals -- Chapter 2: Geology and Mineralogy of Nanosized Tubular Halloysite -- 2.1. Introduction -- 2.2. Background History and Nomenclature -- 2.3. Genesis and Occurrence -- 2.3.1. Geological Processes of Main Halloysite Ores and Soils -- 2.3.2. Genetic Relation Between Halloysite and Kaolinite -- 2.3.3. Main Halloysite Ore Deposit in the World -- 2.4. Mineralogical Characterisation -- 2.4.1. Crystal Structure -- 2.4.1.1. Crystal Structure and Related Characterisations -- 2.4.1.2. Qualitative and Quantitative Differentiation of Halloysite and Kaolinite -- 2.4.2. Chemical Composition and Affecting Factors -- 2.4.3. Morphology and Origin of Its Diversity -- 2.4.3.1. Tubular Halloysite -- 2.4.3.2. Spheroidal Halloysite -- 2.4.3.3. Relation Between Morphology and Iron Content -- 2.4.4. Hydration and Dehydration: An Important Fingerprint of Their Properties -- 2.4.4.1. Dehydration-Rehydration Behaviour upon RH -- 2.4.4.2. Interlayer Water Content and Status -- 2.5. Concluding Remarks -- References -- Chapter 3: Geology and Mineralogy of Imogolite-Type Materials -- 3.1. Introduction -- 3.2. Structural Properties of Imogolite-Type Materials -- 3.2.1. Imogolite -- 3.2.2. Allophanes -- 3.2.3. Typical Methodology Applied to Differentiate Imogolite and Allophanes -- 3.2.4. Imogolite, Allophane, Proto-Imogolite and Proto-Allophane: Multiple Names for a Single Material? -- 3.3. Occurrence and Formation of Imogolite-Type Materials in Geologic and Pedologic Environments -- 3.3.1. Occurrence and Formation in the Geological Environment -- 3.3.2. Occurrence and Formation in Soil.
,
3.3.2.1. Andosols: An Imogolite-Type Material Mine -- 3.3.2.2. Imogolite-Type Material Formation in Soils -- 3.4. Reactivity and Effect on Soil Properties -- 3.4.1. Phosphate -- 3.4.2. Metals -- 3.4.3. Organic Matter -- 3.5. Concluding Remarks -- References -- Part II: Structure and Properties of Nanosized Tubular Clay Minerals -- Chapter 4: Physicochemical Properties of Halloysite -- 4.1. Introduction -- 4.2. Surface and Colloidal Properties of Halloysite -- 4.2.1. Cation Exchange Capacity -- 4.2.2. Specific Surface Area and Porosity -- 4.2.3. Dispersion Behaviour in Water -- 4.2.4. Hydrophilicity and Hydrophobicity -- 4.3. Mechanical Properties of Halloysite -- 4.4. Chemical Stability of Halloysite Under Acid and Alkaline Treatments -- 4.4.1. Effect of Acid Treatment on Halloysite -- 4.4.2. Effect of Alkali Treatment on Halloysite -- 4.5. Concluding Remarks -- References -- Chapter 5: Characterisation of Halloysite by Electron Microscopy -- 5.1. Introduction -- 5.2. Background of Electron Microscopy -- 5.3. Morphological Analysis -- 5.4. Electron Diffraction -- 5.5. HRTEM Imaging of the Crystal Structure -- 5.6. Reconciliation of ED and HRTEM Results -- 5.7. Formation Mechanism of Halloysite Structure -- 5.8. Concluding Remarks -- References -- Chapter 6: Characterisation of Halloysite by Spectroscopy -- 6.1. Introduction -- 6.2. Brief Presentation of Various Spectroscopic Methods -- 6.2.1. Infrared Spectroscopy -- 6.2.2. Raman Spectroscopy -- 6.2.3. X-Ray Photoelectron Spectroscopy -- 6.2.4. Solid-State Magic-Angle-Spinning Nuclear Magnetic Resonance Spectroscopy -- 6.2.5. Mössbauer Spectroscopy -- 6.2.6. Electron Spin Resonance Spectroscopy -- 6.3. Infrared and Raman Spectroscopy of Halloysite and Related Kaolin Minerals -- 6.3.1. The Hydroxyl Groups and Interlayer Water -- 6.3.2. Halloysite Layers.
,
6.4. Other Spectroscopic Characterisations of Halloysite -- 6.4.1. X-Ray Photoelectron Spectroscopy -- 6.4.2. Solid-State MAS-NMR -- 6.4.3. ESR, Mössbauer and Cathodeluminescence Techniques -- 6.5. Concluding Remarks -- References -- Chapter 7: Thermal-Treatment-Induced Deformations and Modifications of Halloysite -- 7.1. Introduction -- 7.2. Dehydration of Halloysite Under Thermal Treatment-Effects of Temperature -- 7.3. Structural Changes and Phase Transformations of Halloysite Under Calcination -- 7.4. Deformations in Texture and Morphology of Halloysite Under Calcination and Related Modifications in Surface Reactivities -- 7.4.1. Deformations in Texture and Morphology -- 7.4.2. Changes in Surface Reactivities -- 7.5. Some Applications of Heat-Treated Halloysite -- 7.6. Concluding Remarks -- References -- Chapter 8: Surface Modifications of Halloysite -- 8.1. Introduction -- 8.2. Chemical Modification of the Internal Lumen Surface -- 8.2.1. Grafting of Organosilane onto the Internal Aluminol Groups -- 8.2.2. Grafting of Other Organic Compounds onto Internal Aluminol Groups -- 8.3. Modification of the External Surface -- 8.3.1. Surfactant, Polymer and Biopolymer Coatings -- 8.3.2. Organosilane Modification of Calcined Halloysite -- 8.4. Modification of the Interlayer Surface -- 8.4.1. Intercalation of Guest Molecules into the Interlayer Space -- 8.4.2. Grafting of Organics in the Interlayer Space -- 8.5. Applications of Surface-Modified Halloysite -- 8.5.1. Halloysite Polymer Nanocomposite -- 8.5.2. Controlled Loading and Release of Guest Molecules -- 8.5.3. Pollution Remediation -- 8.6. Concluding Remarks -- Abbreviations -- References -- Chapter 9: Physicochemical Properties of Imogolite -- 9.1. Introduction -- 9.2. Surface Properties of Imogolite -- 9.2.1. Surface Charge -- 9.2.2. Electrokinetic Phenomena -- 9.3. Chemisorption and Physisorption.
,
9.3.1. Gas Adsorption Properties -- 9.3.1.1. Determination of Textural Properties Through Adsorption of Nonreactive and Non-H-Bonded Molecules -- 9.3.1.2. Determination of Acid-Base Properties Through Adsorption of Reactive Molecules -- 9.3.1.3. Water and H-Bonded Liquid Adsorption on Imogolite -- 9.3.2. Metal/Metalloid Adsorption in the Liquid Phase -- 9.4. Conclusive Remarks -- References -- Chapter 10: Characterisation of Imogolite by Microscopic and Spectroscopic Methods -- 10.1. Introduction -- 10.2. Microscopic Methods -- 10.2.1. Atomic Force Microscopy and Scanning Tunneling Microscopy -- 10.2.2. Transmission Electron Microscopy -- 10.2.3. Cryo-TEM -- 10.3. Spectroscopic Methods -- 10.3.1. Fourier Transformed Infrared Spectroscopy -- 10.3.2. Nuclear Magnetic Resonance -- 10.3.3. X-Ray Absorption Including X-Ray Absorption Near Edge Structure and Extended X-Ray Absorption Fine Structure -- 10.3.4. X-Ray Photoelectron Spectroscopy -- 10.4. Scattering Methods -- 10.4.1. Dynamic Light Scattering -- 10.4.2. X-Ray-Based Analysis -- 10.4.2.1. XRD by Imogolite and Imogolite Bundles -- 10.4.2.2. Small-Angle X-Ray Scattering -- 10.5. Chemical and Mass Analysis -- 10.5.1. Chemical Composition -- 10.5.2. Gas Adsorption -- 10.5.3. Water Adsorption and Thermogravimetric Analysis -- 10.6. Concluding Remarks -- References -- Chapter 11: Deformations and Thermal Modifications of Imogolite -- 11.1. Introduction -- 11.2. X-Ray Scattering Formalism -- 11.2.1. Individual Nanotubes -- 11.2.2. Nanotubes Organised in Bundles -- 11.2.3. Typical Experimental Setup -- 11.3. Ovalisation of the Imogolite -- 11.4. Hexagonalisation of the Imogolite -- 11.5. Dehydroxylation and High-Temperature Structural Transformations -- 11.6. Concluding Remarks -- References -- Chapter 12: Surface Chemical Modifications of Imogolite -- 12.1. Introduction.
,
12.2. Modification of the Inner Pores of Imogolite -- 12.2.1. Direct Synthesis Methods -- 12.2.2. Postsynthesis Methods -- 12.2.3. Properties of the Obtained Materials -- 12.3. Modification of the Outer Surface of Imogolite -- 12.3.1. Grafting of Organic Molecules -- 12.3.2. Reactivity of Outer Surfaces -- 12.4. Surface Properties of the Lamellar Phases Deriving from Imogolite Thermal Collapse -- 12.5. Concluding Remarks -- Abbreviations -- References -- Chapter 13: Liquid-Crystalline Phases of Imogolite and Halloysite Dispersions -- 13.1. Introduction -- 13.2. Structures of Liquid Crystals -- 13.3. The Nematic Phase of Imogolite Nanotubes -- 13.4. The Columnar Phase of Imogolite Nanotubes -- 13.5. Anisotropy of clay polymer nanocomposites Based on Imogolite Nanotubes -- 13.6. Liquid-Crystalline Phases of Halloysite, Another Rodlike Tubular Clay Mineral -- 13.7. Concluding Remarks -- Abbreviations -- References -- Chapter 14: Molecular Simulation of Nanosized Tubular Clay Minerals -- 14.1. Introduction -- 14.2. Computational Aspects -- 14.2.1. Force Field Simulations -- 14.2.2. Density-Functional Theory -- 14.2.3. Self-consistent-Charge Density-Functional Tight-Binding Method -- 14.3. Imogolites -- 14.3.1. Imogolite Model -- 14.3.2. Imogolite: Aluminosilicate Nanotubes -- 14.3.3. Aluminogermanate Nanotubes -- 14.3.4. Other Imogolite-like Nanotubes -- 14.3.5. Modification of Imogolite -- 14.4. Halloysite -- 14.5. Chrysotile and Nano-Fibriform Silica -- 14.6. Concluding Remarks -- Abbreviations -- References -- Part III: Synthesis of Nanosized Tubular Clay Minerals -- Chapter 15: Why a 1:1 2D Structure Tends to Roll?: A Thermodynamic Perspective -- 15.1. Introduction -- 15.2. Equilibrium Energy of a Single Nanotube -- 15.2.1. Single-Walled (SW) Case -- 15.2.2. Double-Walled (DW) Case -- 15.2.3. Multi-Walled (MW) Case -- 15.2.3.1. ma≪R0, thin MW.
,
15.2.3.2. R0≪a, thick single layer.
Language:
English