Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts ; : Gulf Professional Publishing,
    UID:
    almahu_9949697762702882
    Umfang: 1 online resource (358 pages)
    ISBN: 9780128202708
    Serie: Unconventional reservoir engineering series
    Inhalt: Tight Oil Reservoirs: Characterization, Modeling, and Field Development, the latest release in the Unconventional Reservoir Engineering Series, delivers a full spectrum of reservoir engineering guidelines so that the engineer can focus on every stage of development specific to tight oil. Covering characterization, micro- and nano-scale modeling, drilling horizontally, completing hydraulic fracturing, and field development, each section includes case studies, practice exercises, and future references for even deeper understanding. Rounding out with coverage on field economics and remaining challenges, this book puts control in the engineer’s hands.
    Anmerkung: Intro -- Tight Oil Reservoirs: Characterization, Modeling, and Field Development -- Copyright -- Dedication -- Contents -- About the author -- Preface -- Acknowledgment -- Chapter 1: Introduction -- References -- Chapter 2: Classification of unconventional reservoirs -- 2.1. Reservoir classification strategy -- 2.2. Classification of petroleum systems -- 2.2.1. Classification of conventional petroleum reservoirs -- 2.2.1.1. Classification on the basis of storage and flow characteristics of the reservoir -- 2.2.1.2. Classification on the basis of reservoir geometry -- 2.2.2. Classification of unconventional petroleum reservoirs -- 2.2.2.1. Tight oil reservoirs -- 2.2.2.2. Tight gas reservoirs -- 2.2.2.3. Deep and ultra-deep gas reservoirs -- 2.2.2.4. Shale gas reservoirs -- 2.2.2.5. Gas hydrate reservoirs (GHRs) -- 2.2.2.6. Heavy and extra heavy oil reservoirs -- 2.2.2.7. Coalbed methane (CBM) reservoirs -- 2.3. What makes reservoirs unconventional -- 2.4. Classification of tight unconventional reservoirs -- References -- Chapter 3: Geology of tight unconventional oil reservoirs -- 3.1. Petroleum geology of tight unconventional reservoirs -- 3.1.1. Geological generation of unconventional hydrocarbon resources -- 3.1.2. Sedimentation environment of tight UCRs -- 3.2. Geological aspects of shale and tight plays -- 3.3. Source and near-source rock-type unconventional reservoirs -- References -- Chapter 4: Formation evaluation of tight unconventional reservoirs -- 4.1. Tight unconventional reservoir production background -- 4.2. Formation evaluation: Conventional versus unconventional reservoirs -- 4.3. Formation evaluation of conventional reservoirs -- 4.4. Formation evaluation of unconventional reservoirs -- 4.4.1. Unconventional reservoir concept -- 4.4.2. Importance of unconventional reservoirs. , 4.4.3. Challenges in formation evaluation of unconventional reservoirs -- 4.4.4. Typical tight UCR formation evaluation steps -- 4.4.5. Assessing tight unconventional reservoirs -- 4.4.6. Hydrocarbon-in-place assessment -- 4.4.7. Reservoir performance assessment -- 4.5. Assessment case study # 1 -- 4.6. Assessment case study # 2 -- 4.7. Data source and valuation -- 4.7.1. Petrophysical assessment -- 4.7.1.1. Lithology -- 4.7.1.2. Bulk density -- 4.7.1.3. Porosity -- 4.7.1.4. Permeability -- 4.7.1.5. Resistivity -- 4.7.1.6. Water saturation -- 4.7.2. Geochemical assessment -- 4.7.2.1. Vitrinite reflectance -- 4.7.2.2. Types and maturity of the organic matter -- 4.7.2.3. Total organic carbon (TOC) -- 4.7.2.4. Mineral content -- 4.7.2.5. Gas content -- 4.7.3. Geomechanical evaluation -- 4.7.3.1. Poisson's ratio -- 4.7.4. Shear modulus -- 4.7.4.1. Young's modulus -- 4.7.4.2. Stress intensity factor -- 4.7.4.3. Formation stress -- 4.8. Role of macro-, micro-, and nanoscale assessment of tight unconventional reservoirs -- 4.8.1. Mercury intrusion capillary pressure (MICP) -- 4.8.1.1. Example of the use of MICP -- 4.8.2. Gas adsorption method -- 4.8.2.1. Example of the gas adsorption -- 4.8.3. Scanning electron microscopy (SEM) -- 4.9. Static modeling role in formation evaluation of unconventional reservoirs -- 4.9.1. Reservoir-scale model -- 4.9.2. Basin-scale model -- 4.9.2.1. Case study -- 4.9.3. Burial history model -- 4.10. Hydrocarbon enrichment spot identification -- References -- Chapter 5: Reservoir characterization of tight unconventional reservoirs -- 5.1. Reservoir description -- 5.1.1. Conventional reservoir description -- 5.1.2. Differences between conventional and unconventional reservoirs -- 5.1.3. Source-reservoir characteristics -- 5.1.4. Migration and accumulation characteristics -- 5.1.5. Reservoir characteristics. , 5.1.6. Distribution characteristics -- 5.1.7. Flow characteristics -- 5.1.8. Significance of tight unconventional reservoir description -- 5.1.9. Complications/remedies of unconventional reservoir description -- 5.2. Macro-/micro-/nanoscale role in tight unconventional reservoir characterization -- 5.2.1. Scale definition -- 5.2.2. Significance of nanoscale -- 5.2.3. Interrelations of reservoir scales -- 5.3. Flow mechanisms of shale nanochannels -- 5.3.1. Problem definition -- 5.3.2. Nanoscale flow -- 5.3.3. Nanoscale debate -- 5.3.3.1. Slip flow -- 5.3.3.2. Adsorption -- 5.3.3.3. Inorganic and organic matter -- 5.3.4. Summary of nanoscale -- 5.4. Tight unconventional reservoir transition zone description -- 5.4.1. Tools for determining transition zone -- 5.4.1.1. Scanning electron microscope (SEM) -- 5.4.1.2. Mercury injection capillary pressure (MICP) -- 5.4.1.3. Reservoir rock typing (RRT) -- 5.4.1.4. Special core analysis (SCAL) -- 5.4.1.5. Conventional core analysis (CCA) -- 5.4.2. Significance of transition zone investigation -- 5.4.3. Factors affecting transition zone characteristics -- 5.4.3.1. Static and dynamic reservoir rock typing -- 5.4.3.2. Petrophysical analysis and diagenesis -- 5.4.3.3. Hysteresis capillary pressure and relative permeability behaviors -- 5.4.3.4. Wettability envelope -- 5.4.3.5. Electrical resistivity and saturation exponent -- 5.5. Role of CT/XRD/NMR/SEM -- 5.5.1. CT -- 5.5.2. XRD -- 5.5.3. NMR -- 5.5.4. SEM -- 5.6. Tight unconventional reservoir data integration -- 5.6.1. Well logging data -- 5.6.2. Core analysis data -- 5.6.3. Well testing data -- 5.7. Ordos basin, Northcentral China case study -- 5.7.1. Static and dynamic modeling -- 5.7.2. Research on the Ordos Basin, Northcentral China -- References -- Chapter 6: Dynamic modeling of tight unconventional reservoirs. , 6.1. Main differences between conventional and tight unconventional reservoirs flow modeling -- 6.2. Dynamic/static model projection -- 6.3. Mechanisms controlling fluid flow through tight UCRs -- 6.3.1. Non-Darcy flow mechanism -- 6.3.2. The eight governing flow mechanisms in tight UCR porous media -- 6.3.2.1. Viscous forces -- 6.3.2.2. Inertial forces -- 6.3.2.3. Capillary forces -- 6.3.2.4. Diffusion forces -- 6.3.2.5. Sorption forces -- 6.3.2.6. Desorption forces -- 6.3.2.7. Advection forces -- 6.3.2.8. Viscoelastic forces -- 6.4. Dynamic model development -- 6.4.1. Modified Buckingham-Reiner equation -- 6.4.2. Model related to slip boundary conditions -- 6.4.3. Enskog equation -- 6.4.4. Model considering the viscous and diffusion -- 6.4.5. Physical implications of the eight mechanisms -- 6.4.5.1. Viscous forces -- 6.4.5.2. Diffusion forces -- 6.4.5.3. Sorption forces -- 6.4.5.4. Desorption forces -- 6.4.5.5. Inertial forces -- 6.4.5.6. Advection forces -- 6.4.5.7. Capillary forces -- 6.4.5.8. Viscoelastic forces -- 6.4.6. Mathematical expression of eight mechanisms -- 6.4.6.1. Viscous force -- 6.4.6.2. Diffusion force -- 6.4.6.3. Sorption forces -- 6.4.6.4. Desorption forces -- 6.4.6.5. Advection forces -- 6.4.6.6. Inertial forces -- 6.4.6.7. Capillary forces -- 6.4.6.8. Viscoelastic forces -- 6.4.7. Model development sample -- 6.5. Dynamic model validation -- 6.5.1. Parametric validation -- 6.5.2. Experimental data validation -- 6.5.3. Field data validation -- 6.6. Mathematical expressions -- 6.6.1. Combination of viscous flow and Knudsen diffusion -- 6.6.2. Adsorption and desorption -- 6.6.3. Diffusion -- References -- Chapter 7: Field development of tight unconventional reservoirs -- 7.1. Tight unconventional reservoirs development criteria -- 7.1.1. Total organic carbon (TOC) -- 7.1.2. Kerogen type and thermal maturity. , 7.1.3. Storage mechanism -- 7.1.4. Mineralogy -- 7.1.5. Hydrocarbon-in-place -- 7.1.6. Reservoir formation thickness -- 7.1.7. Reservoir fluids saturation, distribution, and fluid contact (egg-box-stack theory) -- 7.1.8. Reservoir pressure -- 7.1.9. Reservoir rock brittleness and fractures -- 7.1.10. Stimulation conditions -- 7.2. Current practice -- 7.2.1. Identifying the hydrocarbon enrichment spots (HES) -- 7.2.2. Tight unconventional reservoir well development -- 7.2.3. Well spacing -- 7.2.4. Pad development -- 7.3. Horizontal drilling and hydraulic fracturing challenges -- 7.3.1. Horizontal wells -- 7.3.2. Fracturing tight unconventional reservoirs -- 7.3.3. Fracturing fluids -- 7.4. Tight unconventional reservoir production profile -- 7.4.1. Nature of production profiles -- 7.5. Production profile comparison of conventional and tight unconventional reservoirs -- 7.6. Advancement in hydraulic fracturing technologies -- 7.6.1. Development of hydraulic fracturing -- 7.6.2. Fracturing fluids -- 7.6.3. Proppants -- 7.6.4. Pumping and blending equipment -- 7.6.5. Fracture treatment design -- 7.7. Refracturing -- 7.8. Advancements in slim wells -- 7.9. EOR for tight unconventional reservoirs -- 7.9.1. Gas injection -- 7.9.1.1. Traditional gas injection -- 7.9.1.2. Gas injection huff-n-buff -- 7.9.2. Water injection -- 7.9.2.1. Continuous water injection -- 7.9.2.2. Water injection huff-n-buff -- 7.9.3. Surfactant injection -- 7.9.4. Other potential EOR techniques -- 7.10. Case studies -- 7.10.1. Wattenberg field case study -- 7.10.2. Eagle ford case study -- References -- Chapter 8: Economics and risk analysis of tight oil unconventional reservoirs -- 8.1. Background -- 8.2. Economic and risk analysis of conventional reservoirs -- 8.2.1. Economic analysis -- 8.2.2. Net cash flow -- 8.2.3. Revenue estimation -- 8.2.4. Taxes and royalties. , 8.2.5. Present value net cash flow (profit).
    Weitere Ausg.: Print version: Belhaj, Hadi Tight Oil Reservoirs San Diego : Elsevier Science & Technology,c2023 ISBN 9780128202692
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz