Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almahu_9949697902302882
    Format: 1 online resource (458 pages)
    ISBN: 0-323-91926-X
    Series Statement: Advances in Pollution Research
    Note: Front Cover -- Microbial Consortium and Biotransformation for Pollution Decontamination -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editors -- Foreword -- Preface -- Acknowledgments -- About the book -- 1 Threats and consequences of untreated wastewater on freshwater environments -- 1.1 Introduction -- 1.2 What is sewage? -- 1.3 Contaminant sources of emerging concerns -- 1.3.1 Wastewater -- 1.3.2 Sewage sludge -- 1.3.3 Urban solid waste -- 1.4 Fate of contaminants -- 1.5 Ecological risk and health assessment of emerging contaminant in untreated water -- 1.6 Untreated wastewater as a cause of antibiotic resistance -- 1.7 Impact of wastewater on cities -- 1.8 Impact of wastewater on industry -- 1.9 Impact of wastewater on agriculture -- 1.10 Impact of wastewater on natural bodies of water -- 1.11 Impact of untreated wastewater on microbial diversity -- 1.12 Impact of wastewater in aquatic environments -- 1.13 Biologic hazards in aquatic environments -- 1.14 Major threats -- 1.15 Why should wastewater be treated? -- 1.16 Challenges and opportunities -- 1.17 Conclusion -- References -- 2 Unraveling a correlation between environmental contaminants and human health -- 2.1 Introduction -- 2.2 Environmental toxicology and related human health risks -- 2.2.1 Air pollution -- 2.2.2 Hazard effect on health -- 2.2.3 Nonpoint source pollution -- 2.2.4 Chemical pollution from the environment -- 2.3 The environmental impact of chemical fertilizers and excessive fertilizers on water quality -- 2.3.1 Oxygen consumption -- 2.3.2 Weed growth and algae bloom -- 2.4 Method to reveal the relationship between human body, environment, and emotion data -- 2.5 Conclusion -- References -- 3 Effect of wastewater from industries on freshwater ecosystem: threats and remedies -- 3.1 Introduction. , 3.2 Saline wastewater: its impact and treatment -- 3.2.1 Effect of salinity on freshwater ecosystem -- 3.3 Food-processing industry wastewater -- 3.4 Leather industry wastewater -- 3.5 Effluents from petroleum industry -- 3.6 Plastic industries and micro- and nanoplastic in freshwater ecosystem -- 3.6.1 Effect of microplastic on freshwater ecosystem -- 3.7 Effect of different wastewater from industries on freshwater organisms -- 3.8 Remedies to reduce industrial effluents -- 3.9 Conclusion -- References -- 4 Credibility on biosensors for monitoring contamination in aquatic environs -- 4.1 Introduction -- 4.2 Major sources of water pollution -- 4.3 Biosensors -- 4.3.1 Biosensors for the detection of heavy metals -- 4.3.1.1 Enzyme-based biosensors -- 4.3.1.2 Protein-based biosensor -- 4.3.1.3 Antibody-based biosensor -- 4.3.1.4 Deoxyribonucleic acid-based biosensor -- 4.3.1.5 Naturally occurring whole-cell biosensor -- 4.3.1.6 Genetic engineering-based biosensor -- 4.3.2 Biosensors for the detection of microorganisms -- 4.3.2.1 Optical biosensors -- 4.3.2.2 Electrochemical biosensor -- 4.3.3 Biosensors for the detection of organic pollutants -- 4.3.3.1 Organic pollutants -- 4.3.3.2 Optical biosensors -- 4.3.3.3 Electrochemical biosensors -- 4.3.3.4 Thermal biosensors -- 4.4 General limitations, challenges, and future prospects of biosensors in wastewater monitoring -- 4.5 Conclusion -- References -- 5 Microbial systems, current trends, and future prospective: a systemic analysis -- 5.1 Introduction -- 5.2 Microbiology for soil health, environmental protection, and sustainable agriculture -- 5.3 Future prospects of environmental microorganisms -- 5.4 Microbial pesticides -- 5.5 Microorganisms' impending visions -- 5.6 Interconnections between plants and soil microorganisms -- 5.7 Plant acquisition of nutrients: direct uptake from the soil. , 5.7.1 Mycorrhizal interactions with plants -- 5.8 Conclusion and remark -- References -- 6 Microbial consortia for pollution remediation-Success stories -- 6.1 Introduction -- 6.2 Bioremediation -- 6.3 Microbial consortia-a multispecialized biological system for bioremediation -- 6.4 Microbial consortia and degradation of pollutants -- 6.4.1 Degradation of petroleum components -- 6.4.2 Remediation of wastewater -- 6.4.3 Degradation of industrial dyes -- 6.4.4 Remediation of other organic pollutants -- 6.5 Conclusion and future perspective -- Acknowledgment -- References -- 7 Biological transformation as a technique in pollution decontamination -- 7.1 Introduction -- 7.2 Biological transformation -- 7.3 Biological transformation classes -- 7.3.1 Biotransformation -- 7.3.1.1 Biotransformation of pharmaceutical compounds -- 7.3.1.2 Biotransformation of metals and metalloids -- 7.3.1.3 Biotransformation of phenol compounds -- 7.3.1.4 Biotransformation of pesticides -- 7.3.1.5 Biotransformation of real effluents -- 7.3.2 Phytotransformation -- 7.3.2.1 Phytotransformation of fluorinated compounds -- 7.3.3 Mycotransformation -- 7.3.3.1 Mycotransformation of pesticides -- 7.3.3.2 Mycotransformation of metals -- 7.3.3.3 Mycotransformation of pharmaceutical compounds -- 7.3.3.4 Mycotransformation of phenol compounds -- 7.3.3.5 Mycotransformation of dyes -- 7.3.4 Phycotransformation -- 7.3.4.1 Phycotransformation of metals and metalloids -- 7.3.4.2 Phycotransformation of pharmaceutical compounds -- 7.3.5 Zootransformation -- 7.3.5.1 Zootransformation of fluorinated compounds -- 7.3.5.2 Zootransformation of metals and metalloids -- 7.4 Factors influencing biological transformation -- 7.5 Functional genes implicated in biological transformation -- 7.6 Enzymes involved in biological transformation -- 7.7 Nanomaterial biological transformation. , 7.8 Cometabolic biological transformation -- 7.8.1 Cometabolic biotransformation -- 7.8.2 Cometabolic phycotransformation -- 7.9 Conclusions and future perspectives -- References -- 8 Role of polyphosphate accumulating organisms in enhanced biological phosphorous removal -- 8.1 Introduction -- 8.2 Natural occurrence of polyphosphate accumulating organisms -- 8.3 Microbiology of EBPR and polyphosphate accumulating organisms -- 8.4 Biochemistry of EBPR and phosphate accumulating organism -- 8.5 EBPR with acetate as a carbon source -- 8.6 EBPR metabolism with substrates other than acetate -- 8.7 Enzymes involved in poly P metabolism -- 8.7.1 Poly P synthesis -- 8.7.2 Poly P degradation -- 8.8 EBPR configurations -- 8.8.1 Mainstream process -- 8.8.1.1 A/O or A2/O -- 8.8.1.2 University of Cape Town-modified process -- 8.8.1.3 Johannesburg configuration -- 8.8.2 Sidestream -- 8.8.2.1 PhoStrip -- 8.8.2.2 Biological-chemical phosphorous and nitrogen removal configuration -- 8.8.3 Cycling system -- 8.8.3.1 Biodenipho process -- 8.8.3.2 Oxidation ditch design -- 8.9 Parameters to consider in EBPR process -- 8.9.1 Temperature -- 8.9.1.1 Recent research on EBPR process in tropical conditions -- 8.9.2 Carbon source and wastewater composition -- 8.9.3 pH -- 8.9.4 Sludge age -- 8.9.5 Recycle of nitrates -- 8.9.6 Sludge phosphorous content -- 8.10 Criteria to monitor effective EBPR process -- 8.11 Transfer of energy pathway genes in microbial enhanced biological phosphorous removal communities -- 8.12 Novel and potential EBPR system -- 8.13 Conclusion and future perspective -- References -- 9 Genetically engineered bacteria: a novel technique for environmental decontamination -- 9.1 Introduction -- 9.2 Environmental contaminants -- 9.2.1 Heavy metal contamination -- 9.2.2 Dye-based hazardous pollutants -- 9.2.3 Radioactive compounds. , 9.2.4 Agricultural chemicals: herbicides, pesticides, and fertilizers -- 9.2.5 Petroleum and polycyclic aromatic hydrocarbon contaminants -- 9.2.6 Polychlorinated biphenyls -- 9.3 Genetically engineered bacteria and their construction -- 9.4 Genetically engineered bacteria for a sustainable environment -- 9.4.1 Remediation of toxic heavy metals -- 9.4.2 Bioremediation of dye by engineered bacteria -- 9.4.3 Bioremediation of radionuclides -- 9.4.4 Bioremediation of agricultural chemicals: herbicides, pesticides, and fertilizers -- 9.4.5 Petroleum and polycyclic aromatic hydrocarbons contaminants -- 9.4.6 Bioremediation of polychlorinated biphenyls -- 9.5 Factors affecting bioremediation from genetically engineered bacteria -- 9.6 Limitations and challenges of in-field release of genetically engineered bacteria -- 9.7 Survivability and sustenance of genetically engineered bacteria -- 9.8 Conclusion -- Acknowledgments -- Abbreviations -- References -- 10 An eco-friendly approach for the degradation of azo dyes and their effluents by Pleurotus florida -- 10.1 Introduction -- 10.2 White-rot fungi -- 10.2.1 Oyster mushroom or Pleurotus florida -- 10.3 Textile dyes -- 10.3.1 Description of dyes -- 10.4 Scenario of textile dyes utilized in India -- 10.5 Explication of dyeing process in textile industries -- 10.6 Hallmarks of wastes effected by the textile industry -- 10.7 Impact of textile dyes on environment -- 10.8 Dye decolorization methods -- 10.8.1 Physical method -- 10.8.2 Chemical method -- 10.8.3 Biological method -- 10.9 Oxidative and hydrolytic enzymes of Pleurotus florida used in decolorization of azo dyes -- 10.9.1 Laccase (E.C 1.10. 3.2) -- 10.9.2 Manganese peroxidase (E.C. 1.11.1.13) -- 10.9.3 Lignin peroxidase -- 10.10 Factors influencing the dye decolorization -- 10.10.1 Influence of pH and temperature -- 10.10.2 Impact of nitrogen source. , 10.10.3 Influence of carbon source.
    Additional Edition: Print version: Dar, Gowhar Hamid Microbial Consortium and Biotransformation for Pollution Decontamination San Diego : Elsevier,c2022 ISBN 9780323918930
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages