UID:
almahu_9949698024302882
Umfang:
1 online resource (323 pages).
ISBN:
0-444-64276-5
,
0-444-64275-7
Serie:
Progress in optics ; Volume 64,
Anmerkung:
Front Cover -- Progress in Optics -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Light Propagation in a Turbulent Ocean -- 1. Introduction -- 2. Homogeneous Turbulence -- 2.1. Turbulence: The Concept -- 2.2. Kolmogorov Theory -- 3. Oceanic Turbulence -- 3.1. Early Studies -- 3.2. Temperature-Salinity Oceanic Spectrum -- 3.3. Overview of Ocean Waters Effects on Light -- 4. Coherent Optical Wave Propagation -- 4.1. Rytov Method: Second-Order Field Moments -- 4.2. Fourth-Order Statistics -- 4.3. Enhanced Backscatter Effect -- 5. Scalar Random Optical Beams -- 5.1. Structure of Random Optical Beams -- 5.2. Extended Huygens-Fresnel Method -- 5.3. Scalar Model Beam Propagation -- 6. EM Random Optical Beams Propagation -- 6.1. Structure of EM Random Optical Waves -- 6.2. Extended Huygens-Fresnel Method -- 6.3. EM Model Beam Propagation -- 7. Simulations, Experiments, and Applications -- 7.1. Experiments and Computer Simulations -- 7.2. Underwater Imaging -- 7.3. Underwater Wireless Optical Communications -- References -- Chapter Two: Dressed Photon as an Off-Shell Quantum Field -- 1. Introduction -- 2. Overturning Conventional Wisdoms in Optical Science by Dressed Photons -- 3. Properties of Dressed Photons and Their Theoretical Models -- 4. Toward Off-Shell Science -- 5. Progress in Experimental Studies -- 5.1. Technologies for Fabrication and Processing of Nanomaterials -- 5.1.1. Deposition of Nanomaterials -- 5.1.2. Smoothing Material Surfaces -- 5.2. Nano-Optical Devices -- 5.2.1. Basic Devices -- 5.2.2. Advanced Devices -- 5.3. Light-Emitting Devices Using Crystalline Silicon -- 6. On a New Model of the Dressed Photon -- 7. Clebsch Parameterization -- 7.1. Lightlike Clebsch Dual Field -- 7.2. Spacelike Clebsch Dual Field -- 8. On Virtual and Dressed Photons -- 9. On Possible Existence of Underlying Quantum Fields.
,
10. Brief Summary of Micro-Macro Duality in Quadrality Scheme -- 10.1. Quadrality Scheme -- 10.2. Emergence of Sector Classifying Space -- 10.3. Sectors = Factor States -- 10.4. Sectors and Disjointness -- 10.5. Relations Among Sectors -- 10.6. Disjointness vs Quasi-Equivalence -- 10.7. Disjoint Complements and Quasi-Equivalence -- 10.8. Quasi-Equivalence and Modular Structure -- 10.9. Quasi-Equivalence and Sector-Classifying Groupoid -- 10.10. Symmetry and Fixed-Point Subalgebra -- 11. Summary -- Acknowledgments -- References -- Chapter Three: Classically Entangled Light -- 1. Introduction -- 2. What is Entanglement? -- 2.1. A Minimal Definition of Classical Entanglement -- 2.2. The Natural World and Its Representations -- 2.3. Entanglement Is Not Peculiar -- 2.4. Entanglement Is a Property of the Representation of a Physical System -- 2.4.1. Two Harmonic Oscillators -- 2.4.2. The Center-of-Mass Representation -- 2.4.3. Separable or Entangled? -- 2.4.4. Quantifying the Entanglement -- 3. Classically Entangled Light -- 3.1. Historical Perspective -- 3.2. Basic Definitions and Properties -- 3.3. Creating and Detecting Classically Entangled Light -- 4. Quantum Measurements on Classically Entangled Light -- 5. Applications of Classically Entangled Light -- 5.1. Communication -- 5.2. Metrology -- 5.3. Enhancing Quantum Processes -- 6. Concluding Remarks -- Acknowledgments -- References -- Chapter Four: Multi-Photon Excitation Based Nonlinear Optical Effects and Applications -- 1. Introduction -- 2. Quantum Electrodynamic Theory of Multi-Photon Absorption (MPA) -- 2.1. Classical Description of the Electromagnetic Field -- 2.2. Quantization of the Electromagnetic Field: Photons -- 2.2.1. Quantization of the Electromagnetic Field -- 2.2.2. The Concept of a Photon -- 2.2.3. Photon Creation and Annihilation Operators.
,
2.2.4. Vector Potential of the Quantized Electromagnetic Field -- 2.3. Combined Quantum System of the Photon-Field and a Molecule -- 2.3.1. Interaction Energy Between Quantum Electromagnetic Field and a Molecule -- 2.3.2. Eigenfunction of Combined Quantum-Mechanical System -- 2.3.3. Intermediate States and Virtual Energy Levels -- 2.4. Two-Photon Absorption (2PA) Process -- 2.4.1. Molecular 2PA Probability -- 2.4.2. Transition Matrix Elements of 2PA -- 2.4.3. 2PA Cross-Section and Induced Beam Intensity Attenuation -- 2.5. Three-Photon Absorption (3PA) Process -- 2.5.1. Molecular 3PA Probability -- 2.5.2. Transition Matrix Elements of 3PA -- 2.5.3. 3PA Cross-Section and Induced Beam Intensity Attenuation -- 2.6. Four-Photon Absorption (4PA) Process -- 2.7. m-Photon Absorption Process -- 3. Highly Multi-Photon Absorption Materials and Characterizations -- 3.1. Highly MPA-Active Materials -- 3.1.1. Requirements for MPA-Active Materials -- 3.1.2. Features of Novel Multi-Photon Active Materials -- 3.1.2.1. Novel Chromophores (dyes) -- 3.1.2.2. Polymers, Liquid Crystals and Ionic Liquids -- 3.1.2.3. Coordination and Organometallic Compounds -- 3.1.2.4. Nanoparticles -- 3.1.2.5. Optical Fibers and Waveguides -- 3.2. Measurements of MPA Cross-Section at Discrete Wavelengths -- 3.2.1. Choice of Excitation Wavelengths -- 3.2.2. Measurements of MPA Cross-Section at Discrete Wavelengths -- 3.2.2.1. Nonlinear Transmission (NLT) Method -- 3.2.2.2. Two-Photon Excited Fluorescence Method (2PEF) -- 3.2.3. Time-Regime Dependence of Measured σ2 Values -- 3.2.4. Saturation Effect of MPA in Sub-Picosecond Regime -- 3.3. Measurements of MPA Spectral Distribution -- 3.3.1. Nondegenerate 2PA Spectral Measurement -- 3.3.2. Degenerate 2PA Spectral Measurement -- 3.3.3. Some 3PA Spectral Measurement Results -- 3.4. Characterization of MPA Induced Fluorescence Emission.
,
3.4.1. Excitation Intensity Dependence of Fluorescence Emission -- 3.4.2. Spectral Profile and Lifetime of MPA-Induced Fluorescence -- 4. Multi-Photon Pumped Upconversion Lasing and Stimulated Scattering -- 4.1. General Features of MPP Lasing Materials and Devices -- 4.2. Two-Photon Pumped Cavity Lasing -- 4.3. Three-, Four- and Five-Photon Pumped Lasing -- 4.4. Multi-Photon Pumped Stimulated Rayleigh-Bragg Scattering -- 4.4.1. Background of Discovering the New Effect -- 4.4.2. Physical Model of Stimulated Rayleigh-Bragg Scattering (SRBS) -- 4.4.3. Experimental Studies of SRBS -- 4.5. Multi-Photon Pumped Stimulated Mie-Bragg Scattering -- 4.5.1. Spontaneous and Stimulated Mie Scattering -- 4.5.2. Stimulated Mie Scattering (SMS) in Metallic Nanoparticle Suspensions -- 4.5.3. SMS in Semiconductor Nanoparticle Suspensions -- 5. MPA-Based Optical Limiting and Stabilization -- 5.1. MPA-Based Optical Limiting -- 5.2. MPA-Based Optical Stabilization -- 6. Data Storage and Microfabrication Based on Multi-Photon Excitation (MPE) -- 6.1. Common Features of MPE for Imaging, Data Storage and Microfabrication -- 6.2. 3D Data Storage in Two-Photon Active Materials -- 6.3. Two-Photon Polymerization Based 3D Microfabrication -- 7. MPE-Based Nonlinear Optical Photoelectric Effects -- 7.1. Introduction to Photoelectric Effects -- 7.1.1. One-Photon Photoemission Effect -- 7.1.2. Electronic Band Structures of Solids -- 7.1.3. One-Photon Induced Photoconductivity in Semiconductors -- 7.1.4. Image-Potential States (IPSs) of the Electron at Metal Surface -- 7.2. Multi-Photon Photoelectron Emission (MPPE) Effects -- 7.2.1. Early Observations of MPPE Phenomena -- 7.2.2. Resonance-Enhanced MPPE Effects -- 7.2.3. MPPE Studies on Clean and/or Adsorbing Metal Surfaces -- 7.3. Multi-Photon Photoconductive (MPPC) Effects in Semiconductors.
,
7.3.1. Mechanisms of Multi-Photon Induced Photoconductivity -- 7.3.2. Observations of MPPC Effects in Semiconductors and Dielectric Media -- 7.3.3. MPPC Based Autocorrelation Measurements of Ultrashort Laser Pulses -- References -- Author Index -- Subject Index -- Cumulative index - volumes 1-64* -- Back cover.
Sprache:
Englisch