Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949728742202882
    Format: 1 online resource
    ISBN: 9783527839384 , 3527839380 , 9783527839377 , 3527839372 , 9783527839360 , 3527839364
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Synthesis of Titanosilicates -- 1.1 Introduction -- 1.2 Synthesis of Medium-Pore Titanosilicates -- 1.2.1 TS-1 Synthesis -- 1.2.2 Ti-MWW Synthesis -- 1.2.3 TS-2 Synthesis -- 1.2.4 Synthesis of Other Medium-Pore Titanosilicates -- 1.3 Synthesis of Large-Pore Titanosilicates -- 1.3.1 Ti-Beta Synthesis -- 1.3.2 Ti-MOR Synthesis -- 1.3.3 Ti-MSE Synthesis -- 1.3.4 Synthesis of Other Large-Pore Titanosilicates -- 1.4 Synthesis of Extra-Large-Pore Titanosilicates -- 1.5 Synthesis of Mesoporous Titanosilicates -- 1.6 Synthesis of ETSs -- 1.7 Conclusions -- References -- Chapter 2 Layered Heteroatom-Containing Zeolites -- 2.1 Introduction -- 2.2 Traditional Layered Heteroatom-Containing Zeolites -- 2.2.1 Heteroatom-Containing MWW-Type Layered Zeolites and Their Derivative Zeolitic Materials -- 2.2.2 Heteroatom-Containing Layered Zeolites Built from fer-Layers -- 2.3 Novel Layered Heteroatom-Containing Zeolites -- 2.3.1 Heteroatom-Containing MFI-Type Layered Zeolites -- 2.3.2 Germanosilicate-Derived Heteroatom-Containing Zeolites -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Synthesis and Catalytic Applications of Sn- and Zr-Zeolites -- 3.1 Introduction -- 3.2 Synthesis of Sn- and Zr-Zeolites -- 3.2.1 Bottom-up Approaches -- 3.2.1.1 Hydrothermal Synthesis -- 3.2.1.2 Dry-Gel Conversion Methods -- 3.2.1.3 Interzeolite Transformation -- 3.2.1.4 Structural Reconstruction Strategy -- 3.2.2 Top-Down Approaches -- 3.2.2.1 Direct Metalation -- 3.2.2.2 Demetallation-Metalation -- 3.3 General Remarks -- 3.4 Catalytic Applications of Sn- and Zr-Zeolites -- 3.4.1 Redox Catalysis -- 3.4.1.1 Baeyer-Villiger Oxidation -- 3.4.1.2 Meerwein-Ponndorf-Verley Redox -- 3.4.2 Lewis Acid Catalysis -- 3.4.2.1 Ring Opening of Epoxides -- 3.4.2.2 Aldol Reaction -- 3.4.2.3 Propane Dehydrogenation. , 5.4.3 Slow Disassembly -- 5.4.4 Reverse ADOR -- 5.5 Germanosilicate-Derived Catalysts -- 5.5.1 Summary and Perspectives -- Acknowledgements -- References -- Chapter 6 Heteroatom-Containing Dendritic Mesoporous Silica Nanoparticles -- 6.1 Introduction -- 6.2 Main Synthetic Methods and Formation Mechanism of Pure Silica-Based Dendritic Mesoporous Silica Nanoparticles (DMSNs) -- 6.2.1 Main Synthetic Methods of Dendritic Mesoporous Silica Nanoparticles (DMSNs) -- 6.2.2 Unified Formation Mechanism of Dendritic Mesoporous Silica Nanoparticles -- 6.3 Synthesis of Heteroatom-Containing DMSNs and Their Catalytic Applications -- 6.3.1 One-Pot Doping Strategy for DMSNs Containing Heteroatoms (Al/Ti/V/Sn/Mn/Fe/Co) -- 6.3.2 Post-grafting for Surface Metal Complexes -- 6.3.3 Loading of Metal and/or Metal Oxide Nanoparticles Within the Nanopores -- 6.4 Summary and Perspectives -- Acknowledgments -- References -- Chapter 7 Chemical Post-Modifications of Titanosilicates -- 7.1 Introduction -- 7.2 Diffusion and Adsorption/Desorption -- 7.2.1 Hierarchical Titanosilicates -- 7.2.2 Surface Hydrophilicity and Hydrophobicity -- 7.3 Surface Reaction -- 7.3.1 Ti Active Sites Content -- 7.3.2 Ti Active Sites Distribution -- 7.3.3 Ti Active Sites Properties -- 7.3.3.1 Electrophilicity of Ti Active Sites -- 7.3.3.2 Coordinate State of Ti Active Sites -- 7.3.3.3 Adjacent Silanol Groups of Ti Active Sites -- 7.4 Solvent Effect -- 7.4.1 Effect of Solvent on Diffusion -- 7.4.2 Effect of Solvent on Adsorption/Desorption -- 7.4.3 Effect of Solvent on Surface Reactions -- 7.4.3.1 Effect on the Formation on Ti O O H -- 7.4.3.2 Effect on the Stability of Ti O O H -- 7.4.3.3 Effect on the Transfer of Ti O O H -- 7.5 Conclusions and Prospects -- References -- Chapter 8 Spectroscopic Characterization of Heteroatom-Containing Zeolites -- 8.1 X-Ray Technique. , 8.1.1 XRD Determination of Framework Structure and Heteroatoms in Zeolites -- 8.1.2 XAS Characterization of Metals in Zeolite -- 8.1.3 XPS Analysis of the Chemical State of Metal Species -- 8.2 Ultraviolet-Visible-Near Infrared (UV-VIS-NIR) Spectroscopy -- 8.2.1 UV-VIS-NIR Characterization of Framework and Non-Framework Metal Species -- 8.2.2 UV-VIS-NIR Characterization of Metal Species on Ion Exchange Sites of Zeolites -- 8.3 Raman Spectroscopy -- 8.3.1 Raman Study of Synthesis Mechanism and Assembly of Metal-Zeolites -- 8.3.2 Raman Characterization of Active Metal-Oxygen Species in Zeolites -- 8.4 Solid-State NMR Spectroscopy -- 8.4.1 Solid-State NMR Characterization of Metal Elements in Zeolites -- 8.4.2 Solid-State Correlation NMR Measurement of Active Site Proximity and Host-Guest Interactions -- 8.4.3 In Situ Solid-State NMR for the Study of Reaction Mechanisms -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 Theoretical Calculations of Heteroatom Substituted Zeolites -- 9.1 Introduction -- 9.2 Ti-Doped Zeolites -- 9.2.1 Preferred Tetrahedral (T) Sites for Substitution -- 9.2.2 Lewis Acid -- 9.2.3 Active Site with H2O2 -- 9.2.4 Reaction Mechanism -- 9.2.4.1 Epoxidation of Olefins -- 9.2.4.2 Ammoximation and Oxidation of Cyclohexanone -- 9.2.4.3 Oxidation Desulfurization Reactions -- 9.3 Sn-Doped Zeolites -- 9.3.1 Preferred Substitution T Sites and Acidity -- 9.3.2 Reaction Mechanism -- 9.3.2.1 Glucose Isomerization to Fructose and Epimerization to Mannose -- 9.3.3 Other Catalytic Reactions -- 9.4 Other Metal-Substituted Zeolites -- 9.5 Summary and Outlook -- Acknowledgments -- References -- Chapter 10 Catalytic Ammoximation of Ketones or Aldehydes Using Titanosilicates -- 10.1 Introduction -- 10.2 The Development of Titanosilicates in Ammoximation of Ketones and Aldehydes. , 10.3 Ammoximation Mechanism and Product Distributions of Representative Ketones and Aldehydes -- 10.3.1 Titanosilicate-Catalyzed Ammoximation Mechanism -- 10.3.2 Product Distributions for Ammoximation of Representative Carbonyl Compounds -- 10.4 Enhancing Ammoximation Performances in Titanosilicate/H2O2 System -- 10.4.1 Improvement of Catalytic Ammoximation Activity -- 10.4.1.1 Regulation of Ti Active Sites -- 10.4.1.2 Enhancement of Diffusion Properties -- 10.4.1.3 Improvement of Hydrophobicity -- 10.4.1.4 Regulation of Acid Sites -- 10.4.2 Improvement of Catalytic Ammoximation Stability -- 10.5 Ketone Ammoximation Technology for Industrial Processes -- 10.6 Titanosilicate-Based Bifunctional Catalysts for Process Intensified or Tandem Ammoximation Reactions -- 10.7 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 11 Titanosilicate-Based Alkene Epoxidation Catalysis -- 11.1 Introduction -- 11.2 Reaction Chemistry of Alkene Epoxidation Catalyzed by Titanosilicate Zeolites -- 11.3 Typical Alkene Epoxidation Cases -- 11.3.1 Propylene Epoxidation for PO Production -- 11.3.2 Propylene Chloride Epoxidation -- 11.3.3 Ethylene Epoxidation to EO, EG, and Ethers -- 11.4 Industrial Propylene Epoxidation Techniques and Processes -- 11.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 12 Propylene Epoxidation with Cumene Hydroperoxide/Titanosilicates -- 12.1 Introduction -- 12.2 Traditional Route for PO Production (Chlorohydrin Process) -- 12.3 Co-production Route for PO Production (PO/TBA and PO/SM Processes) -- 12.4 PO-Only Production Routes (HPPO and CMHPPO Routes) -- 12.5 Catalyst Design for PO-Only Routes -- 12.5.1 Mesoporous Ti-Doped Catalysts for CMHPPO Process -- 12.5.2 Hierarchical Titanosilicates for CMHPPO Process -- 12.6 Industrial CMHPPO Process -- 12.7 Conclusions and Outlooks -- References.
    Additional Edition: Print version: ISBN 3527350942
    Additional Edition: ISBN 9783527350940
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages