Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    UID:
    almahu_9949767382202882
    Format: 1 online resource (385 pages)
    Edition: 1st ed.
    ISBN: 9783031548604
    Note: Intro -- Preamble -- Contents -- List of Figures -- Nomenclature -- Chapter 1 About water -- 1.1 On origins -- 1.2 On the origin of life -- 1.3 On the origin of civilisation -- 1.4 On the origin and source of industry -- 1.5 To the origin -- Part I Fundamentals and derivations -- Chapter 2 Essential mathematics -- 2.1 Conventions -- 2.2 Physical quantities and their mathematical descriptions -- 2.2.1 Scalar -- 2.2.2 Vector -- 2.2.3 Tensor -- 2.2.4 Scalar product -- 2.2.5 Cross product -- 2.3 Euler vs. Lagrange -- 2.3.1 Lagrange's perspective -- 2.3.2 Euler's perspective -- 2.4 Functions -- 2.4.1 Derivations -- 2.4.1.1 Partial derivative -- 2.4.1.2 Total derivative -- 2.4.2 Integration -- 2.5 Kinematics -- 2.5.1 Dilatation -- 2.5.2 Shearing -- 2.5.3 Rotation -- 2.5.4 Velocity gradient tensor -- 2.5.5 Divergence -- 2.6 Einstein summation convention -- 2.7 Elementary fluid mechanic terms -- 2.8 Selected flow lines -- 2.8.1 Streakline -- 2.8.2 Streamline -- 2.8.3 Pathline -- 2.8.4 Streamtube -- 2.9 Selected cross-sections -- Chapter 3 Essential physics -- 3.1 Aggregate states -- 3.1.1 Solid -- 3.1.2 Liquid -- 3.1.3 Gaseous -- 3.1.4 Aggregate states of water -- 3.2 Quantities and their units -- 3.3 Newton's axioms -- 3.3.1 Lex prima - inertial law -- 3.3.2 Lex secunda - basic equation of mechanics -- 3.3.3 Lex tertia - "actio = reactio" -- 3.4 Principal physical quantities -- 3.4.1 Force -- 3.4.2 Momentum -- 3.4.3 Work -- 3.4.4 Energy -- 3.4.5 Power -- 3.4.6 Density -- 3.4.7 Stress -- 3.4.8 Deformation (rate) -- 3.4.9 Pressure -- 3.4.9.1 Absolute pressure -- 3.4.9.2 Relative pressure -- 3.4.10 Compressibility -- 3.4.11 Viscosity -- 3.4.12 Surface tension -- 3.4.13 Discharge -- 3.5 Properties of water -- Chapter 4 Introduction to potential theory -- 4.1 Introduction to potential theory -- 4.2 Parallel flow -- 4.3 Source and sink flow. , 4.4 Potential vortex -- 4.5 Summary of the elementary solutions -- Chapter 5 Basic equations -- 5.1 Continuity condition -- 5.2 Cauchy equation -- 5.3 Constitutive equation -- 5.4 Euler equation -- 5.5 Navier-Stokes equation -- 5.6 Dimensionsless Navier-Stokes equation -- 5.7 Bernoulli equation -- 5.8 Momentum equation -- 5.9 Summary of the basic equations -- Chapter 6 Turbulence and its modelling -- 6.1 Introduction to turbulence -- 6.2 Cursory approach to numerics -- 6.3 Direct Numerical Simulation -- 6.4 Reynolds Averaged Navier-Stokes Simulation -- 6.5 Large Eddy Simulation -- 6.6 Shallow Water Equations -- 6.7 Final considerations on turbulence -- Part II Applied hydraulics -- Chapter 7 Hydrostatics -- 7.1 General information on hydrostatics -- 7.2 Hydrostatic pressure -- 7.3 Pressure force -- 7.4 Buoyancy -- 7.5 Pressure diagrams -- 7.5.1 Pressure diagrams with application of pressure on both sides -- 7.5.2 Fluids with different densities -- 7.5.3 Water pressure on inclined flat objects -- 7.5.4 Decomposition -- 7.5.5 Lines of action of resulting horizontal forces -- 7.5.6 Lines of action of resulting vertical forces -- 7.5.7 'Base point line' -- 7.6 Hydrostatic paradox -- 7.7 Water pressure on arbitrarily inclined flat objects -- 7.8 Moving liquids -- 7.8.1 Acceleration along a straight line -- 7.8.2 Acceleration along a circular path -- 7.9 Boyle-Mariotte law -- Chapter 8 Bernoulli equation and energy diagrams -- 8.1 Classification of the Bernoulli equation -- 8.2 Piezometric pressure height -- 8.3 Excursus: Energy diagram - an introduction -- 8.4 Bernoulli in pipes -- 8.5 Excursus: Energy diagram - a continuation -- 8.6 Bernoulli and outflows -- 8.7 Cavitation -- Chapter 9 Outflow from openings -- 9.1 Outflow through openings -- 9.2 Torricelli equation -- 9.3 Outflow from a "small" and a "large" opening. , 9.4 Outflow at a variable water level -- Chapter 10 Momentum equation -- 10.1 Classification of the law of momentum -- 10.2 Flow forces in open channel flows -- 10.3 Fastening and flange force at a hose with nozzle -- Chapter 11 Steady pipe flow -- 11.1 Dynamic similarities of pipe flows -- 11.2 Description of laminar flows -- 11.3 Wall shear stress in pipe flows -- 11.4 Hydraulic losses of laminar flows -- 11.5 Hydraulic losses of turbulent flows -- 11.6 Minor (local) hydraulic losses -- 11.7 Turbomachines -- 11.7.1 Pumps -- 11.7.1.1 Pipeline characteristic -- 11.7.1.2 Pump characteristic -- 11.7.1.3 Parallel pump arrangement -- 11.7.1.4 Serial pump arrangement -- 11.7.2 Turbines -- 11.8 Pipe junctions -- 11.9 Summary of pipe flow -- Chapter 12 Unsteady pipe flow -- 12.1 General remarks on unsteady pipe flows -- 12.2 Continuity condition according to Alliévi -- 12.3 Energy equation according to Alliévi -- 12.4 Riemann solution of the Alliévi equations -- 12.5 Joukowsky surge -- 12.6 Momentum equation -- 12.7 Method of characteristics -- 12.7.1 Initial characteristic -- 12.7.2 Calculation modules -- 12.7.3 Nodes within the domain -- 12.7.4 Nodes at the left boundary -- 12.7.4.1 Reservoir with constant water level -- 12.7.4.2 Reservoir with time-varying water level -- 12.7.4.3 Time-variable velocity -- 12.7.4.4 Valve -- 12.7.5 Node at the right boundary -- 12.7.5.1 Reservoir with constant water level -- 12.7.5.2 Reservoir with time-varying water level -- 12.7.5.3 Time-variable velocity -- 12.7.5.4 Valve -- 12.8 Summary: unsteady pipe flows -- Chapter 13 Steady free surface flow -- 13.1 Flows with free surface -- 13.2 Dynamic similarities of open channel flows -- 13.3 Bernoulli equation in open channels -- 13.3.1 H-y diagram -- 13.3.2 Mathematical description of the critical conditions -- 13.3.3 q-y diagram -- 13.4 Flow under a sluice gate. , 13.5 Flow over weirs -- 13.5.1 Poleni equation -- 13.5.2 du Buat equation -- 13.5.3 Submerged flow over a weir -- 13.6 Discharge through a siphon weir -- 13.7 Flow depth at a fall -- 13.8 Venturi channel -- 13.9 Steady-state, uniform flow (normal conditions) -- 13.10 Steady-state nonuniform flow -- 13.10.1 Differential equation of the water surface profile -- 13.10.2 Water surface profiles -- 13.10.2.1 Transition subcritical - subcritical -- 13.10.2.2 Transition supercritical - supercritical -- 13.10.2.3 Transition subcritical - supercritical -- 13.10.2.4 Transition supercritical - subcritical: hydraulic jump -- 13.10.2.5 Water surface profiles at the hydraulic jump -- 13.11 Computation of water surface profiles - direct step method -- 13.11.1 Distance Δx of two flow depths -- 13.11.2 Flow depth at distance Δx -- Chapter 14 Unsteady free surface flow -- 14.1 Saint-Venant differential equations -- 14.2 Upsurge and downsurge -- Chapter 15 Introduction to groundwater flow -- Part III Excercises with solutions -- Chapter 16 Exercises -- 1 Hydrostatics -- 2 Outflow through openings -- 3 Momentum equation -- 4 Free surface flows -- 5 Pipe flow -- 6 Cross-cutting issues -- 7 Unsteady free surface flows -- Chapter 17 Solutions -- 1 Solutions: hydrostatics -- 2 Solutions: outflow through openings -- 3 Solutions: momentum equation -- 4 Solutions: free surface flows -- 5 Solutions: pipe flow -- 6 Solutions: cross-cutting issues -- 7 Solutions: unsteady free surface flows -- Part IV Practical examples -- Chapter 18 Forces and moments of force at the weir in Wieblingen -- Chapter 19 Determination of the bearing forces in the Leitzachwerk pumped-storage power station -- Chapter 20 Dimensioning of an interceptor sewer in Hamburg Waltershof -- Chapter 21 Optimisation of the operation level at Uppenbornwerk 1 -- Appendix A -- A.1 Dipole of a potential flow. , A.2 Shear stress balance at the differential element -- A.3 Derivation of the friction coefficient fD -- A.3.1 Reynolds averaging -- A.3.2 Prandtl's mixing length -- A.3.3 Law of the wall -- A.3.3.1 Region I -- A.3.3.2 Region II and III -- A.3.4 Smooth conditions -- A.3.5 Rough conditions -- A.3.6 Transition region -- A.4 Calculation of the determinant of a matrix -- A.5 Derivation of the critical conditions for selected cross-sections -- A.5.1 Trapezoid -- A.5.2 Triangle -- A.5.3 Parabola -- A.6 Wave theory -- A.6.1 Deep water waves -- A.6.2 Shallow-water waves -- A.6.3 Capillary waves -- A.7 Solution for the practical example of the Hamburg interceptor sewer -- A.8 Results for the example of the unsteady pipe flow from page 202 -- References.
    Additional Edition: Print version: Rapp, Christoph Hydraulics in Civil Engineering Cham : Springer International Publishing AG,c2024 ISBN 9783031548598
    Language: English
    Keywords: Electronic books.
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages