Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Bristol :Institute of Physics Publishing,
    UID:
    almahu_9949767570502882
    Umfang: 1 online resource (500 pages)
    Ausgabe: 1st ed.
    ISBN: 9780750345965
    Serie: IOP Ebooks Series
    Inhalt: This reference text provides a detailed guide to high-temperature electrolysis, including the fundamental and materials aspects of solid oxide and protonic ceramic electrolysis cells, considerations at stack and system levels, recent developments, and important combinations of high-temperature electrolysis with other processes.
    Anmerkung: Intro -- Preface -- Editor biographies -- Werner Sitte -- Rotraut Merkle -- List of contributors -- Chapter 1 High-temperature electrolysis-general overview -- 1.1 The need for energy conversion and the storage of sustainable energy -- 1.1.1 From fossil fuels to sustainable energy -- 1.1.2 Potential conversion and storage technologies -- 1.2 Electrolysis cells -- 1.2.1 Thermodynamics of the electrolysis of H2O and CO2 -- 1.2.2 Types of electrolysis cell -- 1.3 Useful electrochemical concepts for SOC cells -- 1.3.1 Example of SOC structure and materials -- 1.3.2 Types of potentials in SOCs -- 1.3.3 Non-recognized overpotential types in composite electrodes and MIECs -- 1.4 Recommendations for future work -- 1.4.1 Stoichiometry of materials -- 1.4.2 Impurities and segregations -- 1.4.3 Leaks -- 1.5 Outlook -- Acknowledgments -- References -- Chapter 2 Electrolyte materials for solid oxide electrolysis cells -- 2.1 Introduction -- 2.1.1 Definition of a solid oxide electrolysis electrolyte -- 2.1.2 Requirements for the electrolyte component -- 2.2 Materials in common use -- 2.2.1 Zirconia-based electrolytes -- 2.2.2 Ceria-based electrolytes -- 2.2.3 Lanthanum gallate-based perovskite electrolytes -- 2.2.4 New electrolyte compositions -- 2.3 Electrolyte degradation mechanisms -- 2.4 Concluding remarks -- References -- Chapter 3 Anode materials for solid oxide electrolysis cells -- 3.1 Solid oxide electrolysis cell anodes -- 3.2 Perovskites: a material scientist's playground -- 3.2.1 Crystal structure of perovskites -- 3.2.2 The influence of different A- and B-site ions on selected materials properties -- 3.3 Diffusion in the solid state -- 3.3.1 Definitions of diffusion coefficients -- 3.3.2 Measurement of diffusion coefficients and ionic conductivity -- 3.3.3 Diffusion coefficients of relevant positrode materials. , 3.4 Compatibility with electrolyte materials -- 3.5 Layered rare-earth nickelates -- 3.5.1 Introduction -- 3.5.2 Crystal structure -- 3.5.3 First-order Ruddlesden-Popper phases -- 3.5.4 Compatibility with electrolyte materials -- 3.5.5 Higher-order Ruddlesden-Popper phases -- 3.5.6 SOEC positrode performance -- 3.6 Concluding remarks -- Acknowledgments -- References -- Chapter 4 Cathode materials for solid oxide electrolysis cells -- 4.1 Fuel electrode processes and requirements -- 4.2 Ni-YSZ cermet electrodes -- 4.3 Ceramic electrodes -- 4.3.1 Ceria -- 4.3.2 Lanthanum chromites -- 4.3.3 Ferrite oxides -- 4.3.4 Strontium titanates -- 4.3.5 Integration of nanostructured electrocatalysts by infiltration -- 4.3.6 Integration of nanostructured electrodes by exsolution -- 4.4 Concluding remarks: from the state of the art to advanced materials design -- References -- Chapter 5 Interconnects and coatings -- 5.1 Introduction -- 5.2 Theory and characterization methods used to evaluate metallic interconnects -- 5.2.1 High-temperature oxidation -- 5.2.2 Volatilization of Cr -- 5.2.3 Electrical conductivity -- 5.3 Degradation of interconnects in SOEC atmospheres -- 5.3.1 Oxygen-rich atmospheres -- 5.3.2 Hydrogen and hydrogen-steam atmospheres -- 5.3.3 CO2-CO atmospheres -- 5.3.4 Other forms of interconnect degradation -- 5.4 Concluding remarks -- Acknowledgment -- References -- Chapter 6 Electrode kinetics -- 6.1 Introduction -- 6.1.1 Reaction pathways -- 6.1.2 Model-type thin-film electrodes as a tool to identify reaction pathways -- 6.2 Three-phase boundary active electrodes -- 6.2.1 Ni/YSZ as the fuel electrode -- 6.2.2 Pt/YSZ in an oxygen-containing atmosphere -- 6.2.3 LaMnO3-based electrodes for oxygen reduction -- 6.3 Surface active electrodes -- 6.3.1 The role of electrode defect chemistry in electrode reactions. , 6.3.2 The meaning of the electrochemical overpotential in the case of mixed-conducting electrodes -- 6.3.3 Effect of the electrochemical overpotential on a possible surface potential step -- 6.3.4 Mechanistic picture of oxygen exchange on MIEC oxide electrodes -- 6.3.5 The effect of chemical evolution of the electrode surface -- 6.4 Methods used for the characterization of electrode kinetics -- 6.4.1 Current-voltage curves -- 6.4.2 Impedance spectroscopy -- 6.5 Concluding remarks -- References -- Chapter 7 Cell architectures -- 7.1 Cell geometries -- 7.1.1 Introduction -- 7.1.2 Planar cells -- 7.1.3 Tubular cells -- 7.2 SOEC configurations -- 7.2.1 Introduction -- 7.3 Range of operating conditions -- 7.4 Mechanical properties -- 7.5 Concluding remarks -- References -- Chapter 8 Metal-supported cells -- 8.1 Background and motivation -- 8.2 The manufacture of metal-supported cells -- 8.2.1 Materials and processing of metal substrates -- 8.2.2 The manufacture of metal-supported cells -- 8.3 Operational statuses of MS-SOECs -- 8.4 Operational statuses of MS-PCECs -- 8.5 Specific degradation issues of metal-supported cells -- 8.5.1 Oxidation of the metal substrate -- 8.5.2 Interdiffusion -- 8.5.3 Ni migration -- 8.5.4 Chromium poisoning of the oxygen electrode -- 8.6 Concluding remarks -- Acknowledgments -- References -- Chapter 9 Advanced data analysis -- 9.1 Introduction -- 9.2 Electrochemical characterization of SOECs -- 9.2.1 SOEC testing in general -- 9.2.2 Electrochemical impedance spectroscopy -- 9.3 Microstructural analysis and reconstruction -- 9.3.1 FIB-SEM and μCT -- 9.3.2 Image processing, segmentation, and reconstruction -- 9.4 Impedance data analysis -- 9.4.1 Validity of impedance data -- 9.4.2 Equivalent circuit modeling -- 9.4.3 Impedance data deconvolution approaches -- 9.4.4 DRT-based equivalent circuit modeling and simulation. , 9.4.5 Correlation of impedance and physicochemically meaningful parameters -- 9.5 Concluding remarks -- References -- Chapter 10 Long-term stack tests -- 10.1 Introduction -- 10.2 General overview of the degradation tests of SOEC stacks -- 10.3 Long-term SOEC stack tests -- 10.3.1 Stacks of ESC cells -- 10.3.2 Stacks of FSC cells -- 10.4 Degradation mechanisms -- 10.4.1 Oxidation of the interconnect -- 10.4.2 Degradation of the YSZ electrolyte -- 10.4.3 Degradation of the LSC(F) air electrode -- 10.4.4 Degradation of the Ni-based electrode -- 10.4.5 Degradation due to contact in stacks -- 10.5 Concluding remarks -- References -- Chapter 11 Proton and mixed proton/hole-conducting materials for protonic ceramic electrolysis cells -- 11.1 Introduction -- 11.2 Proton-conducting oxides -- 11.2.1 Proton incorporation reaction and thermodynamics -- 11.2.2 Proton transport -- 11.2.3 Electronic defects in proton-conducting materials -- 11.2.4 Grain-boundary properties and processing issues -- 11.2.5 Material examples -- 11.3 Mixed proton/hole-conducting materials -- 11.3.1 Proton incorporation reactions and thermodynamics, defect interactions -- 11.3.2 Proton transport in triple-conducting perovskites -- 11.3.3 Electronic conductivity, conflicting trends -- 11.3.4 Surface oxygen exchange kinetics and mechanism -- 11.3.5 Materials examples -- 11.4 Concluding remarks -- Acknowledgments -- References -- Chapter 12 Thermodynamics, transport, and electrochemistry in protonic ceramic electrolysis cells -- 12.1 Introduction -- 12.1.1 SOEC function -- 12.1.2 PCEC function -- 12.1.3 Practical tradeoffs -- 12.2 Electrolyte and electrode compositions -- 12.3 Faradaic and energy efficiencies -- 12.4 Electrolyte membrane performance -- 12.4.1 BCZYYb equilibrium defect chemistry -- 12.4.2 Defect and charge transport -- 12.4.3 Half-cell reversible potential and cell voltage. , 12.4.4 BCZYYb membrane transport performance -- 12.5 Electrochemical cells -- 12.5.1 Pore phase gas-phase transport -- 12.5.2 Charge conservation within the electron-conducting phase -- 12.5.3 Defect-incorporation chemistry -- 12.5.4 Charge-transfer chemistry -- 12.5.5 Parameter fitting -- 12.5.6 Defect-incorporation rates -- 12.6 Concluding remarks -- Acknowledgments -- References and additional reading -- Chapter 13 Tubular protonic ceramic electrolysis cells and direct hydrogen compression -- 13.1 Introduction -- 13.1.1 PCEC operating principles -- 13.1.2 Cell geometries for pressurized operation -- 13.2 The thermodynamics and kinetics of pressurized PCECs -- 13.2.1 Cell-level thermodynamics of pressurized operation -- 13.2.2 Thermodynamics and kinetics of cell components -- 13.3 Materials, cell architectures, and assembly -- 13.3.1 Materials for pressurized operation -- 13.3.2 Tubular cell fabrication and assemblies -- 13.4 Status of tubular PCEC technology -- 13.4.1 Ambient-pressure cell testing -- 13.4.2 Pressurized tubular PCEs -- 13.4.3 Future prospects for pressurized tubular PCECs -- 13.5 Concluding remarks -- Acknowledgments -- References -- Chapter 14 Planar protonic ceramic electrolysis cells for H2 production and CO2 conversion -- 14.1 H2 production and CO2 conversion in PCECs -- 14.1.1 PCECs for H2 production -- 14.1.2 CO2 conversion in PCECs -- 14.1.3 Thermodynamics of H2O electrolysis and CO2 conversion in PCECs -- 14.1.4 Advantages of employing PCECs for H2 production and CO2 conversion -- 14.2 Current progress in the field of PCECs for H2 production and CO2 conversion -- 14.2.1 PCECs for H2 production -- 14.2.2 PCECs for CO2 conversion -- 14.3 Challenges and opportunities of H2 production in protonic ceramic electrochemical cells -- 14.3.1 Faradaic efficiency of PCECs for H2 production -- 14.3.2 Long-term durability. , 14.4 Concluding remarks.
    Weitere Ausg.: Print version: Sitte, Werner High-Temperature Electrolysis Bristol : Institute of Physics Publishing,c2023 ISBN 9780750339520
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz