Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    UID:
    almahu_9949838468502882
    Format: 1 online resource (604 pages)
    Edition: 1st ed.
    ISBN: 9780443220715
    Series Statement: Progress in Biochemistry and Biotechnology Series
    Note: Intro -- Enzyme Biotechnology for Environmental Sustainability -- Copyright -- Contents -- Contributors -- Biographies -- Chapter 1: Technological advancements in enzymes and their applications -- 1. Introduction -- 2. Enhancing the catalytic activity of an enzyme -- 3. Identifying novel enzymes -- 4. Improving the existing enzymes -- 5. Application of enzymes -- 6. Conclusions -- References -- Chapter 2: Microbial enzymes in laundry detergents: Recent advances, future prospects, and risk assessment -- 1. Introduction -- 2. Enzymes as an additive in laundry detergents -- 2.1. Proteases -- 2.2. Lipases -- 2.3. α-Amylases -- 2.4. Cellulases -- 2.5. Other detergent-compatible enzymes -- 3. Commercialization of microbial enzymes as additives in detergents -- 4. Health safety aspects of detergent-compatible enzymes -- 5. Conclusion and future prospects -- References -- Chapter 3: Enzyme biotechnology toward cleaner production in industry -- 1. Introduction -- 2. Synthesis of biofuels -- 2.1. Textile industry -- 2.2. Food sector -- 2.3. Waste management -- 2.4. Paper and pulp industry -- 2.5. Optimizing the use of energy resources -- 2.6. Utilization of resources -- 2.7. Environmental pollutants and discarded materials -- 2.8. Biochemical application -- 2.9. Biodegradability and environmental toxicity -- 2.10. Alignment with the sustainability principles -- 2.11. Expansion and synchronization -- 2.12. Societal and governmental considerations -- 2.13. Summary of international commercial enzyme industry developments -- 3. Submerged fermentation -- 3.1. Solid substrate fermentation -- 4. Factors influencing the activity of enzymes in industrial settings -- 4.1. Temperature of the reaction mixture -- 4.2. pH of the process -- 4.3. Concentration of enzyme -- 4.4. Specific activity of the enzyme -- 4.5. Shelf life. , 5. Important enzymes involved in cleaner production in industry -- 5.1. Use of amylases in the food industry -- 5.2. Application of protease in industrial applications -- 5.3. Use of xylanases in pulp and paper industries -- 5.4. Employment of phytase in animal feed industries -- 5.5. Chitinase application in several industries -- 5.6. Enzyme lipase and its potential applications -- 6. Conclusion -- References -- Chapter 4: Production of fungal bioproducts valorizing renewable resources: New hope for environmental sustainability -- 1. Introduction -- 2. Macrofungal-based biorefineries -- 2.1. Macrofungi -- 2.2. Biorefinery approaches -- 2.3. Renewable feedstock -- 3. Production strategies -- 4. Macrofungi-derived bioproducts utilizing renewable feedstock -- 4.1. Enzymes -- 4.2. Polysaccharides -- 4.3. Proteins -- 5. Properties of macro-fungi -- 5.1. Prebiotic properties -- 5.2. Antioxidant properties -- 5.3. Antimicrobial properties -- 5.4. Immuno-modulating and antiproliferative properties -- 5.5. Antidiabetic properties -- 6. Physicochemical and biophysical characterization of macro-fungi bioproducts -- 7. Conclusions and future directions -- References -- Chapter 5: Recent advances in enzyme biotechnology for sustainable textiles -- 1. Introduction -- 2. Enzymes used in textile industry -- 2.1. Hydrolases -- 2.2. Oxidoreductase -- 3. Application of enzymes in textile industry -- 3.1. Plant fibers processing with enzymes -- 3.1.1. Desizing -- 3.1.2. Bioscouring -- 3.1.3. Bleaching -- 3.1.4. Biostoning -- 3.1.5. Biopolishing -- 3.1.6. Bast fibers -- 3.2. Processing of animal fibers with enzymes -- 3.2.1. Wool -- 3.2.2. Silk -- 4. Other applications of enzymes in textile industry -- 4.1. Synthetic fiber modification -- 4.2. Biological polymer synthesis and functionalization -- 4.3. Immobilized enzymes utilization. , 4.4. Enzymatic treatment of the textile industry effluent -- 5. New prospects and future research scope -- 6. Conclusions -- References -- Chapter 6: Role of microbial enzymes in wastewater processing and treatment -- 1. Introduction -- 1.1. Microbial enzymes -- 1.2. Microbial enzyme activity -- 1.3. Benefits of using microbial enzymes in wastewater treatment -- 2. Microbial enzymes used for wastewater treatment -- 2.1. Hydrolytic enzymes -- 2.2. Oxidoreductases -- 2.3. Lyases -- 2.4. Isomerases -- 2.5. Ligases -- 3. Factors affecting the enzymes efficiency -- 3.1. Temperature -- 3.2. pH -- 3.3. Substrate concentration -- 3.3.1. The Michaelis-Menten equation -- 3.3.2. Enzyme concentration -- 3.4. Inhibitors -- 4. Role of microbial enzymes in wastewater treatment -- 4.1. Primary treatment -- 4.2. Secondary treatment -- 4.3. Tertiary treatment -- 5. Applications of microbial enzymes in wastewater treatment -- 5.1. Biodegradation of organic pollutants -- 5.2. Enzymatic detoxification and disinfection -- 5.3. Nutrient extraction from wastewater -- 5.4. Heavy metal transformation -- 5.5. Aggregation of microplastics -- 6. Conclusion -- 7. Recommendations -- References -- Chapter 7: Biocatalysis in organic synthesis using microbial enzymes-Latest developments -- 1. Introduction -- 1.1. Enzyme catalysis-Impact of human life -- 1.2. Important aspects in enzyme functionality -- 2. Enzyme synthesis-Whole-cell and cell-free approach -- 3. Application of enzyme technology -- 4. Scope of enzymes in organic synthesis -- 4.1. Microbial enzymes -- 4.2. Organic synthesis -- 4.3. Applications of microbial enzymes -- 5. Role of microbial enzymes in industry focused on organic synthesis -- 5.1. Pharmaceutical industry -- 5.2. Agriculture -- 5.3. Biorefineries -- 5.4. Pulp and paper industry -- 5.5. Food industry -- 5.6. Detergent industry -- 5.7. Waste treatment. , 5.8. Textile industry -- 5.9. Leather industry -- 5.10. Dairy industry -- 6. Application oriented research-Latest developments -- 7. Conclusions -- References -- Chapter 8: Genetically engineered enzymes for sustainable environment applications -- 1. Introduction -- 2. The role of genetic engineering -- 3. Remedial measures -- 3.1. Inorganic pollutants -- 3.1.1. Heavy metals -- 3.1.1.1. Step 1: Transport of ions into the cell through transporters -- 3.1.1.2. Step 2: Complexing ions via PCs produced from PCS followed by their sequestration -- 3.1.2. Nuclear wastes -- 3.2. Organic pollutants -- 3.2.1. Persistent organic pollutants (POPs) -- 3.2.2. PAHs -- 3.2.3. PCBs -- 3.2.4. Pesticides -- 3.2.5. Plastics -- 3.3. Dyes -- 3.4. Oils -- 4. Precautionary measures -- 4.1. Bioplastics -- 4.2. Detergent enzymes -- 4.3. Biofuels -- 4.4. Biopesticides -- 4.5. Biofertilizers -- 5. Conclusion, concerns, and future aspects -- References -- Chapter 9: Health risk assessment of enzymes in different sectors -- 1. Introduction -- 2. Application of enzymes in different sectors -- 2.1. Industrial sectors -- 2.1.1. Food and feed -- 2.1.2. Baking and beverage -- 2.1.3. Textiles -- 2.1.4. Paper and pulp -- 2.1.5. Pharmaceuticals -- 2.1.6. Cosmetics -- 2.1.7. Biofuels -- 2.2. Environmental sectors -- 2.2.1. Bioremediation -- 2.2.2. Decolorization -- 2.3. Biomedical sectors -- 2.3.1. Antimicrobial -- 2.3.2. Anticancer -- 2.3.3. Antioxidant -- 3. Health risk assessment due to exposure of enzymes through oral, inhalation, skin, and eye contact -- 3.1. Type 1 hypersensitivity (immunologic contact urticaria) -- 3.2. Irritation -- 3.3. Type 4 hypersensitivity (allergic contact dermatitis) -- 4. Dose-response assessment -- 5. Reproductive toxicity -- 6. Genotoxicity -- 7. Risk characterization -- 8. Risk management -- 9. Conclusions or future prospective -- References. , Chapter 10: Immobilized enzymes and their applications in environmental sustainability of food production and biodegradation -- 1. Introduction -- 2. Carrier matrices for enzyme immobilization -- 2.1. Biopolymers -- 2.2. Synthetic polymers -- 2.3. Hydrogels -- 2.4. Inorganic supports -- 2.5. Smart polymers -- 2.6. Conducting polymers -- 2.7. Gold nanoparticles -- 2.8. Magnetic nanoparticles -- 3. Methods of enzyme immobilization -- 3.1. Adsorption -- 3.2. Covalent binding -- 3.3. Encapsulation or entrapment -- 3.4. Cross-linking -- 3.5. Immobilization by inclusion -- 3.6. Affinity binding -- 3.7. Magnetic immobilization -- 3.8. Microencapsulation -- 3.9. Sol-gel immobilization -- 4. Advantages of enzyme immobilization -- 5. Application in food production -- 5.1. Production of high fructose corn syrup -- 5.2. Production of cheese -- 5.3. Cocoa industry -- 5.4. Brewing industry -- 6. Environmental sustainability in food production -- 7. Applications in biodegradation -- 8. Degradation of pollutants in wastewater -- 8.1. Mechanism of the removal of pollutants -- 9. Other applications of immobilized enzymes toward sustainable goals -- 9.1. Inhibitor screening -- 9.2. Biosensing -- 9.3. Biodiesel production -- 9.4. Detergent industry -- 9.5. Textile industry -- 9.6. Proteomics -- 9.7. Biomedical application -- 10. Conclusion -- References -- Chapter 11: Enzyme-based bioreactors and their biotechnological applications -- 1. Introduction -- 2. Diverse forms of enzyme for bioreactors -- 2.1. Innovation in enzyme modeling and transitions premises -- 2.2. Enzyme-based reactors -- 3. Approaches for improving bioelectrocatalysts -- 3.1. Design of enzyme reactors and their selection -- 4. Major biotechnology application of enzyme-based bioreactors -- 4.1. Pharmaceutical industries -- 4.2. Production of biogas and bioethanol -- 5. Pollutant removal. , 5.1. Microbial cells and enzyme-based process.
    Additional Edition: Print version: Dahiya, Praveen Enzyme Biotechnology for Environmental Sustainability San Diego : Elsevier Science & Technology,c2024 ISBN 9780443220722
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages