UID:
almahu_9949838469402882
Format:
1 online resource (400 pages)
Edition:
1st ed.
ISBN:
0-443-13949-0
Series Statement:
Micro and Nano Technologies Series
Note:
Front Cover -- Renewable and Clean Energy Systems Based on Advanced Nanomaterials -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Renewable and clean energy systems based on advanced nanomaterials, basics, and developments -- References -- 2 Advanced nanomaterials for perovskite based solar cells -- 2.1 General introduction -- 2.2 Metal oxide nanoparticles -- 2.2.1 Metal oxide electron transporting layers (MO-ETLs) -- 2.2.1.1 TiO2 -- 2.2.1.2 SnO2 -- 2.2.1.3 ZnO -- 2.2.1.4 Other MOs -- 2.2.1.5 Double layer ETLs -- 2.2.2 Metal oxide electron transporting layers (MO-ETLs) -- 2.2.2.1 NiOX -- 2.2.2.2 MoOx -- 2.2.2.3 Other MOs -- 2.3 Carbon nanomaterials -- 2.4 Quantum dots -- 2.5 Other advanced nanomaterials -- 2.6 Conclusion and outlook -- Nomenclature -- References -- 3 Advanced nanomaterials for dye sensitized solar cells -- 3.1 General introduction -- 3.2 Structure of dye-sensitized solar cell -- 3.3 Nanomaterials usage in dye-sensitized solar cells -- 3.3.1 Photoanodes -- 3.3.1.1 One-dimensional nanomaterials -- 3.3.1.2 Two-dimensional nanostructures -- 3.3.1.3 Three-dimensional hierarchical nanostructures -- 3.3.1.4 Nanocomposites -- 3.3.2 Counter electrode -- 3.3.2.1 Platinum -- 3.3.2.2 Platinum alloys -- 3.3.2.3 Carbon -- 3.3.2.3.1 Carbon black -- 3.3.2.3.2 Carbon nanotubes -- 3.3.2.3.3 Graphene sheets -- 3.3.2.4 Transition metal compounds -- 3.4 Conclusion and outlook -- References -- 4 Mixed metal oxide-based nanomaterials for hydrogen storage -- 4.1 General introduction -- 4.2 Electrochemical hydrogen storage -- 4.3 Hydrogen storage mechanism -- 4.3.1 Physisorption and chemisorption -- 4.3.2 Redox process -- 4.3.3 Spillover effect -- 4.3.4 Other mechanism -- 4.4 Materials -- 4.4.1 Pristine mixed metal oxides -- 4.4.2 Composites -- 4.4.2.1 Carbonous-based nanocomposites.
,
4.4.2.2 Polymer-based nanocomposites (polymer support) -- 4.4.2.3 Two-dimensional-based nanocomposites (layered support) -- 4.4.2.4 Metal-organic frameworks -- 4.5 Conclusion and outlook -- References -- 5 Graphitic carbon nitride/graphene-based nanomaterials for hydrogen storage -- 5.1 General introduction -- 5.2 Graphene-based material -- 5.2.1 Graphene-based nanomaterials for hydrogen storage -- 5.3 Graphitic carbon nitride -- 5.3.1 Graphitic carbon nitride for hydrogen storage -- 5.4 Graphene/graphitic carbon nitride for hydrogen storage -- 5.5 Conclusion and outlook -- References -- 6 Active nanomaterials for Li-ion batteries and advanced nanomaterials for supercapacitors -- 6.1 General introduction -- 6.2 Active materials: nanostructuring versus microstructuring -- 6.3 Morphology controlling -- 6.3.1 Zero-dimensional structures -- 6.3.2 One-dimensional structures -- 6.3.3 Two-dimensional structures -- 6.3.4 Three-dimensional structures -- 6.4 Advanced electrode materials -- 6.4.1 Metal-organic frameworks (MOFs) -- 6.4.2 MXenes -- 6.4.3 Layered double hydroxides -- 6.5 Conclusion and outlook -- References -- 7 Basics of photovoltaic panels and an overview of the use of solar energy in the world -- 7.1 Introduction -- 7.2 Brief history of using the sun as an energy source -- 7.2.1 Billion years ago, solar energy began to radiate to the Earth -- 7.3 Introducing photovoltaic systems -- 7.3.1 Current solar energy businesses -- 7.3.2 Electricity production costs with photovoltaic technology -- 7.3.3 The advantages and disadvantages of solar energy -- 7.3.4 Comparing energy generation technologies -- 7.3.5 Top ten companies producing photovoltaic panels -- 7.4 The basics of photovoltaic panels -- 7.4.1 Introduction -- 7.4.2 Photovoltaic technologies -- 7.4.3 Monocrystalline cells -- 7.4.4 Polycrystalline cells -- 7.4.5 Thin-film cells.
,
7.4.6 The components of a solar power plant -- 7.4.7 Converters -- 7.4.8 Solar photovoltaic modules -- 7.4.9 Mounting rack (framework or foundation) -- 7.4.10 Grid connection -- 7.4.11 Solar cell efficiency -- 7.4.11.1 Converter efficiency -- 7.4.12 Standards -- 7.4.13 The performance factor of photovoltaic power plants -- References -- 8 The efficiency of solar panels and power control -- 8.1 Introduction -- 8.2 Solar panel modeling -- 8.2.1 Obtaining the parameter of simple exponential models -- 8.3 Battery modeling -- 8.4 Converter modeling -- 8.5 Optimal operating point tracking algorithms -- 8.5.1 The perturbation and observation algorithm -- 8.5.2 Base voltage algorithms -- 8.5.3 Bird count algorithm -- 8.5.4 Fuzzy methods -- 8.5.5 Type-2 fuzzy systems for modeling uncertainties -- 8.6 Control design -- 8.6.1 Problem 1 -- 8.6.2 Simulation -- 8.6.3 Conclusion -- 8.7 Examples of solar energy deployment -- 8.7.1 Large solar farms -- 8.7.2 The Bhadla Solar Park in India -- 8.7.3 Pavagada solar park -- 8.7.4 Tengger desert project in the Ningxia Province of China -- 8.7.5 Longyangxia Dam Solar Park -- 8.7.6 Longyangxia Dam Solar Park -- 8.7.7 Longyangxia Dam Solar Park -- 8.7.8 Villanueva Solar -- 8.7.9 Kamuthi Solar Power Plant -- 8.7.10 Solar Star solar farm -- 8.7.11 Golmud solar park of China -- 8.7.12 Topaz solar power plant of California -- 8.7.13 Agua Caliente power plant of Arizona -- 8.7.14 Meuro power plant -- 8.7.15 Iran's photovoltaic power plants -- 8.7.16 The Ghadir solar power plant of Isfahan -- 8.7.17 Example of trough parabolic power plants -- 8.7.18 Examples of solar power towers -- 8.7.19 Small- and medium-sized solar power plants -- 8.7.20 Domestic power plants -- 8.7.21 Iran's photovoltaic power plants -- 8.7.21.1 Shiraz solar power plant -- 8.7.21.2 Tabriz solar power plant -- 8.7.21.3 Mashhad solar power plant.
,
8.7.21.4 Taleghan solar power plant -- 8.8 Household power plants -- 8.8.1 Household use of solar power plants in Kashan -- 8.8.2 Reduction in greenhouse gas emissions achieved by the photovoltaic power plant in Haljerd -- 8.8.2.1 Kyoto protocol -- 8.8.2.2 Principles -- 8.8.2.3 Details -- 8.8.2.4 Financial commitments -- 8.8.2.5 Purchasing and selling greenhouse publications -- 8.8.2.6 Greenhouse gas emissions of various power plants in their lifetime -- 8.8.3 Equalization of nonemission of carbon dioxide -- 8.8.4 Equalization with the area of forestation -- 8.8.5 Equalization of carbon dioxide reduction by a 100kW photovoltaic power plant -- 8.8.6 Equalization of a 100kW photovoltaic power plant with unburned gasoline -- 8.8.7 Equalization of the 100kW photovoltaic power plant with forestation -- References -- 9 The physics of sunlight and cells -- 9.1 Introduction -- 9.2 The sun -- 9.2.1 Properties of sunlight -- 9.2.2 The functional principles of solar cells -- 9.2.2.1 Production of charge carriers based on the absorption of photons in bond-forming materials -- 9.2.2.2 Sequential analysis of the charge carriers of the photovoltaic generator in a bond -- 9.2.2.3 Collecting the photovoltaic charge carriers in terminals -- 9.2.2.4 Loss mechanisms -- 9.2.3 The basic physics of semiconductors -- 9.2.4 Materials -- 9.2.5 Atomic structure -- 9.2.6 Doping -- 9.2.7 Doped semiconductors -- 9.2.8 The history of the photovoltaic effect -- 9.2.9 The photovoltaic effect -- 9.2.10 Recombination -- 9.2.11 Auger electron spectroscopy -- 9.2.11.1 The Auger effect and electron emission -- 9.2.11.2 Examples of applications -- 9.2.11.3 Samples -- 9.2.12 Optical absorption processes -- References -- 10 The different methods of using solar energy -- 10.1 Introduction -- 10.2 Dye-sensitized solar cells.
,
10.2.1 The structure and working principle of dye-sensitized solar cells -- 10.2.2 Types of dye sensitizers -- 10.3 Organic solar cells -- 10.3.1 The working principle of organic solar cells -- 10.3.2 Advantages -- 10.3.3 Disadvantages -- 10.3.4 Concentrator photovoltaics technology -- 10.3.5 Specifications of concentrator modules -- 10.3.6 New and emerging concepts of solar cells -- 10.3.7 Solar thermal energy -- 10.3.8 Solar water heaters -- 10.3.9 Solar air conditioning -- 10.3.9.1 Solar absorption air conditioning -- 10.3.9.2 Photovoltaic air conditioning system -- 10.3.10 Absorption chillers -- 10.3.11 Desync cooling systems -- 10.3.12 Solar ovens and furnaces -- 10.3.13 Floating photovoltaic systems -- 10.4 Technical discussions -- 10.5 Feasibility in Middle East -- 10.6 The components of floating photovoltaic power plants -- 10.7 Evaluating the photovoltaic power plant installed at sea -- 10.8 Using the photovoltaic system for water treatment -- 10.9 Treatment system mechanisms -- 10.10 Different water treatment technologies -- 10.10.1 Distillation -- 10.10.2 Electrodialysis -- 10.10.3 Reverse osmosis -- 10.10.4 Advantages -- 10.10.5 Disadvantages -- 10.10.6 Challenges of water treatment using the photovoltaic system -- 10.10.7 Economic advantages -- References -- 11 Financial analysis of solar energy -- 11.1 Introduction -- 11.2 Reducing costs in manufacturing system components -- 11.2.1 Standardized design of photovoltaic systems -- 11.2.2 System volume -- 11.2.3 Solar cell efficiency -- 11.3 Reducing cost in sales and distribution of system component -- 11.4 Reducing installation and repair costs -- 11.5 Improving the efficiency of financial systems and programs -- 11.6 Improving equipment performance and correcting amplifier characteristics -- 11.6.1 Microgrids and their operating modes.
,
11.6.2 Overview of control technology for multiple inverters in off-grid mode.
Additional Edition:
ISBN 0-443-13950-4
Language:
English