Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949870111402882
    Format: 1 online resource (828 pages)
    Edition: 1st ed.
    ISBN: 0-443-21795-5
    Series Statement: Micro and Nano Technologies Series
    Note: Intro -- Smart Nanomaterials for Environmental Applications -- Copyright -- Dedication -- Contents -- Contributors -- Preface -- Acknowledgments -- Part I: Foundational advances -- Chapter 1: Introduction to smart nanomaterials for environmental remediation -- 1. Introduction -- 2. Current developments in smart nanomaterials -- 2.1. Classes of smart nanomaterials -- 2.1.1. Carbon nanodots -- 2.1.2. Carbon nanoparticles -- 2.1.3. Dendrimers -- 2.1.4. Zeolites -- 2.1.5. Metal oxide nanoparticles -- 2.1.6. Other noble nanomaterials -- 2.1.6.1. Nano-adsorbents -- 2.1.6.2. Nanocatalysts -- 2.1.6.3. Nanomembranes -- 2.2. Various external stimuli in smart nanomaterials -- 2.2.1. Temperature -- 2.2.2. Force -- 2.2.3. pH -- 2.2.4. Moisture -- 2.2.5. Electric fields -- 2.2.6. Magnetic fields -- 2.3. Methodology to produce synergistic nanomaterials -- 2.3.1. Co-precipitation method -- 2.3.2. Laser evaporation technique -- 2.3.3. Mechanical milling approach -- 2.3.4. Lithography method -- 2.3.5. Sol-gel technique -- 2.3.6. Hydrothermal method -- 2.3.7. Sonochemical technique -- 2.3.8. Plasma method -- 2.3.9. Aerosol-based techniques -- 2.4. Ecologically friendly method of preparing nanomaterials -- 2.4.1. Microorganisms-based nanomaterial -- 2.4.2. Plant-based nanomaterials -- 2.5. Challenges associated with the preparation of diverse nanomaterials -- 2.5.1. The cost of producing nanomaterials -- 2.5.2. Knowledge gap -- 2.5.3. Agglomeration of particles -- 2.6. Chemistry of the synergistic effects of blending nanoparticles together -- 3. Innovative characterization techniques -- 3.1. Size and surface area determination -- 3.2. Elemental composition and morphological analysis -- 3.3. Optical studies -- 3.4. Structural and defects -- 4. New models in smart nanomaterials -- 4.1. Self-healing materials for treatment of WW. , 4.2. Advantages of self-healing materials in water and WW treatment -- 4.3. Environmental remediation based on smart nanomaterials -- 5. Conclusion -- Acknowledgments -- References -- Chapter 2: Introduction to environmental needs and requirements of smart nanomaterials -- 1. Introduction -- 2. Definition and classification of smart nanoparticles -- 2.1. Stimulus-responsive nanoparticles -- 2.1.1. Temperature-responsive nanoparticles -- 2.1.2. pH-responsive nanoparticles -- 2.1.3. Light-responsive nanoparticles -- 2.1.4. Magnetic field-responsive nanoparticles -- 2.1.5. Electric field-responsive nanoparticles -- 2.2. Targeted nanoparticles -- 3. Green synthesis of nanoparticle -- 4. Environmental benefits of smart nanomaterials -- 5. Environmental requirement of nanomaterials -- 5.1. Stability -- 5.2. Biocompatibility -- 5.3. Degradability -- 5.4. Nontoxicity -- 5.5. Minimization of environmental impact -- 5.6. Recyclability -- 5.7. Risk assessment -- 6. Assessment of environmental risk induced by smart nanomaterials -- 6.1. Exposure assessment -- 6.2. Fate and transport -- 6.3. Toxicity assessment -- 6.4. Ecological and human health risk characterization -- 6.5. Risk management and mitigation -- 7. The importance of conducting environmental risk assessment -- 7.1. Protection of the environment -- 7.2. Human health and safety -- 7.3. Sustainable development -- 7.4. Regulatory compliance -- 7.5. Public perception and acceptance -- 8. Regulations and standards that govern uses of smart nanomaterials -- 9. Other applications of nanotechnology -- 9.1. Water and wastewater treatment -- 9.2. Environmental catalyst -- 9.3. Application of nanoparticles in pollution prevention -- 10. Responsible use and disposal of smart nanomaterials -- 11. Conclusion -- References. , Chapter 3: Nanotechnology characterization: Emerging techniques for accurate and reliable nanostructural analysis -- 1. Introduction -- 2. Existing measurement techniques for nanocharacterization -- 2.1. Overview of traditional characterization methods -- 2.2. Techniques that have been extended to the nanoscale -- 2.2.1. Scanning electron microscopy -- 2.2.2. X-ray diffraction -- 2.2.3. Raman spectroscopy -- 2.2.4. Atomic force microscopy -- 2.2.5. Transmission electron microscopy -- 2.2.6. X-ray photoelectron spectroscopy -- 2.2.7. Dynamic light scattering -- 2.2.8. UV-Vis spectroscopy -- 2.2.9. FTIR -- 2.2.10. Other techniques -- 2.2.10.1. ICP-MS -- 2.2.10.2. APS -- 2.2.10.3. SMPS -- 2.2.10.4. MALDI-MS -- 2.2.10.5. Nanoindentation -- 2.2.10.6. Rheological analysis -- 3. Combining existing techniques for more comprehensive characterization -- 4. Overview of the challenges and future prospects of nanocharacterization -- 5. Conclusions -- References -- Chapter 4: Measurements to address nanocharacterization challenges -- 1. Introduction -- 2. Overview of nanostructured materials -- 3. Nanocharacterization techniques -- 3.1. Compositional techniques -- 3.1.1. X-ray photoelectron spectroscopy (XPS) -- 3.1.2. Fourier transform infrared (FTIR) -- 3.1.3. X-ray diffraction (XRD) -- 3.2. Microscopic techniques -- 3.2.1. Scanning electron microscopy (SEM) -- 3.2.2. Transmission electron microscopy (TEM) -- 3.2.3. Atomic force microscopy (AFM) -- 3.2.4. Dynamic light scattering (DLS) -- 3.2.5. Zeta potential -- 3.2.6. Thermogravimetric analysis (TGA) -- 3.2.7. Differential scanning calorimetry (DSC) -- 3.2.8. Optical spectroscopy -- 3.2.9. Raman spectroscopy -- 3.2.10. UV-Visible Spectroscopy -- 3.3. Advancement of novel methodologies aimed at the compositional and performance factors at the nanoscale level -- 3.3.1. High-pressure liquid chromatography (HPLC). , 3.3.2. Gas chromatography (GC) -- 3.3.3. Elemental analysis -- 4. Limitations and challenges of present technologies -- 5. Prospective future developments in novel techniques for nanomaterial characterization -- 6. Conclusion -- Acknowledgments -- References -- Chapter 5: Smart nanomaterials: Fundamentals, synthesis, and characterization -- 1. Introduction and historical background to nanotechnology and nanoscience -- 2. The nanos: Basic perception, standard terminologies, and their significance -- 2.1. Types of SNMs -- 2.2. Classification of SNMs -- 3. Synthesis and fabrication method -- 3.1. Top-down synthetic approach -- 3.2. Bottom-up synthetic approach -- 3.3. Physical method -- 3.4. Chemical method -- 3.5. Biological method -- 4. Characterization of smart nanomaterials -- 5. Limitations and future prospects of SNMs -- 6. Conclusion -- References -- Part II: Various environmental applications -- Chapter 6: Newer preparation methods relating to smart nanomaterial solutions and environmental science -- 1. Introduction -- 2. Properties of nanomaterials -- 2.1. Mechanical properties -- 2.2. Electrical properties -- 2.3. Optical properties -- 2.4. Thermal properties -- 2.5. Magnetic properties -- 3. Strategies for the synthesis of nanomaterials -- 4. Green approaches for preparing nanomaterials -- 4.1. Plant-mediated synthesis of nanomaterials -- 4.2. Microbes-mediated synthesis -- 4.3. Other newer methods for preparing smart nanomaterials -- 4.3.1. Bio-inspired nanomaterial synthesis -- 4.3.2. Biomimetic mineralization -- 4.3.3. Self-assembly -- 4.3.4. Biomimetic surface functionalization -- 5. General approaches to smart nanomaterial synthesis -- 5.1. Top-down approaches -- 5.1.1. Laser ablation -- 5.1.2. Ball milling -- 5.1.3. Arc discharge method -- 5.1.4. Electrospinning -- 5.1.5. Plasma treatment -- 5.1.6. Sputtering. , 5.2. Bottom-up approaches -- 5.2.1. Chemical vapor deposition (CVD) -- 5.2.2. Sol-gel -- 5.2.3. Sonochemical method -- 5.2.4. Layer-by-layer assembly -- 5.2.5. Coprecipitation method -- 5.2.6. Microwave-assisted synthesis -- 5.2.7. Hydrothermal method -- 5.2.8. Surface coating/encapsulation -- 5.3. Integration of 3D printing and nanomaterials -- 5.3.1. Inkjet printing -- 5.3.2. Direct laser writing -- 5.3.3. Selective laser sintering/melting -- 5.3.4. Electrohydrodynamic jet printing -- 5.3.5. Hybrid printing -- 6. Scale-up techniques and approaches -- 7. Applications of nanomaterials in the environment -- 8. Challenges in the synthesis and applications of nanomaterials -- 9. Conclusions -- References -- Chapter 7: Mitigating environmental challenges in manufacturing industries via electrochemical processes toward climate s ... -- 1. Introduction -- 2. Environmental pollution in manufacturing industries -- 2.1. Air pollution -- 2.2. Water pollution -- 2.3. Noise pollution -- 2.4. Land and soil pollution -- 3. Electroreduction of toxic gases to petrochemicals -- 3.1. Electrochemical reduction of CO and CO2 gases -- 3.2. Electrochemical reduction of SO2 gases -- 3.3. Electrochemical reduction of nitrogen gas -- 4. Electrochemical treatment of wastes -- 4.1. Electrocoagulation -- 4.2. Electrooxidation -- 4.2.1. Direct anodic oxidation -- 4.2.2. Indirect anodic oxidation -- 4.3. Electroflotation -- 5. Technology for clean energy production and conversion -- 5.1. Anaerobic digestion -- 5.1.1. Hydrolysis -- 5.1.2. Acidogenesis -- 5.1.3. Acetogenesis -- 5.1.4. Methanogenesis -- 5.2. Waste-to-energy (WtE) -- 5.3. Gasification -- 6. Industrial decarbonization via electrosynthesis -- 6.1. Carbon capture -- 6.2. Electrochemical reduction -- 6.3. Catalysts -- 6.4. Product formation -- 7. Summary and outlook for future studies -- References. , Chapter 8: Synthesis of various analogues of carbon nanomaterials.
    Additional Edition: ISBN 0-443-21794-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages