Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949876143402882
    Format: 1 online resource (466 pages)
    Edition: 1st ed.
    ISBN: 0-443-26471-6
    Note: Front Cover -- Natural Biomaterials for Tissue Engineering -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 An introduction to biomaterials -- 1.1 Introduction -- 1.2 Definitions of biomaterials -- 1.3 Basic features required for the biomaterial -- 1.3.1 Characteristics of biomaterials -- 1.3.2 Requirements for scaffolds used in tissue engineering -- 1.4 Classification of biomaterials -- 1.5 Biocompatibility -- 1.6 Summary -- References -- 2 Decellularization and characterization methods -- 2.1 Introduction -- 2.2 Decellularization -- 2.2.1 Cellular matrix acellular matrix -- 2.3 Decellularized biomaterials -- 2.4 Characterization methods of decellularized tissues -- 2.4.1 Hematoxylin and eosin -- 2.4.2 4',6-Diamidino-2-phenylindole (DAPI) -- 2.4.3 The MTT cell proliferation assay -- 2.4.4 Second harmonic generation (SHG) -- 2.4.5 Electron microscopy -- 2.4.5.1 Transmission electron microscopy (TEM) -- 2.4.5.2 Scanning electron microscopy (SEM) -- 2.4.6 Mechanical properties -- 2.4.7 Zymography -- 2.5 Development of decellularized naturally derived biomaterials -- 2.6 In vitro evaluation of decellularized naturally derived biomaterials -- References -- 3 Crosslinking of biomaterials -- 3.1 Introduction -- 3.2 Advantages of crosslinking biomaterials -- 3.3 Disadvantages of crosslinking biomaterials -- 3.4 Types of crosslinking -- 3.4.1 Chemical crosslinking -- 3.4.1.1 Advantages of chemical crosslinking -- 3.4.1.2 Disadvantages of chemical crosslinking -- 3.4.2 Physical crosslinking -- 3.4.2.1 Advantages of physical crosslinking -- 3.4.2.2 Disadvantages of physical crosslinking -- 3.4.3 Biological crosslinking -- 3.4.3.1 Advantages of biological crosslinking -- 3.4.3.2 Disadvantages of biological crosslinking -- 3.5 Crosslinking agents -- 3.5.1 Glutaraldehyde -- 3.5.2 Formaldehyde -- 3.5.3 Glyoxal. , 3.5.4 Diphenyl phosphoryl azide -- 3.5.5 Ethylene glycol diglycidyl ether -- 3.5.6 Polyethylene glycol -- 3.5.7 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride -- 3.5.8 Hexamethylene diisocyanate -- 3.5.9 Physical -- 3.5.10 Enzymatic -- References -- 4 Rumen-derived extracellular matrix scaffolds and clinical application -- 4.1 Introduction -- 4.2 Anatomy of ruminant stomach -- 4.3 Decellularization of forestomach matrix -- 4.4 Preparation of acellular matrices from bubaline rumen -- 4.4.1 Macroscopic observations -- 4.4.2 Microscopic observations -- 4.4.2.1 Treatment with zwitter ionic detergent (tri-N-butyl phosphate) -- 4.4.2.2 Treatment with nonionic detergent (triton X-100) -- 4.4.2.3 Treatment with ionic detergent (sodium dodecyl sulfate) -- 4.4.2.4 Treatment with nonionic detergent (tween-20) -- 4.4.2.5 Treatment with enzyme (trypsin) -- 4.4.3 DNA quantification -- 4.4.4 Cytocompatibility analysis -- 4.5 Development of 3-D bioengineered scaffolds from bubaline rumen -- 4.6 Testing the efficacy of 3-D bioengineered scaffolds in a diabetic rat model -- 4.7 Evaluation of bubaline rumen matrix in clinical cases -- 4.7.1 Surgical technique -- 4.7.2 Gross and clinical observations -- 4.8 Preparation of acellular matrices from caprine rumen -- 4.8.1 Microscopic observations -- 4.8.2 DNA quantification -- 4.8.3 SDS-PAGE analysis -- 4.8.4 Calorimetric protein estimation -- 4.8.5 Scanning electron microscopic observations -- 4.9 Evaluation of caprine rumen matrix in clinical cases -- 4.10 Conclusions -- References -- 5 Reticulum-derived extracellular matrix scaffolds -- 5.1 Introduction -- 5.2 Preparation of acellular bovine reticulum extracellular matrix -- 5.2.1 Gross and microscopic observations -- 5.2.2 Scanning electron microscopic observations -- 5.2.3 DNA contents analysis. , 5.3 Preparation of acellular caprine reticulum extracellular matrix -- 5.3.1 Microscopic observations -- 5.3.2 DNA contents analysis -- 5.3.3 Calorimetric protein estimation -- 5.3.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis -- 5.4 Evaluation of bovine reticulum extracellular matrix in rat model -- 5.4.1 Wound area and percent contraction -- 5.4.2 Gross observations -- 5.4.3 Hematological observations -- 5.4.4 Immunological observations -- 5.4.5 Histopathological observations -- 5.5 Conclusion -- References -- 6 Omasum-derived extracellular matrix scaffolds -- 6.1 Introduction -- 6.2 Preparation of acellular matrix from buffalo omasum -- 6.2.1 Gross observations -- 6.2.2 Microscopic observations -- 6.2.3 DNA quantification -- 6.2.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis -- 6.3 Preparation of acellular matrix from goat omasum -- 6.3.1 Microscopic observations -- 6.3.2 DNA quantification -- 6.3.3 Calorimetric protein estimation -- 6.3.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis -- 6.4 Experimental evaluation of acellular buffalo omasum in wound healing in rat model -- 6.4.1 Animals and ethics statement -- 6.4.2 Skin wound creation and implantation -- 6.4.3 Wound area and wound contraction -- 6.4.4 Gross observations/planimetry -- 6.4.5 Immunological observations -- 6.4.5.1 Humoral response -- 6.4.5.2 Cell-mediated immune response -- 6.4.6 Histological observations -- 6.4.6.1 Group I (open wound) -- 6.4.6.2 Group II (wound with commercially available collagen sheet) -- 6.4.6.3 Group III (wound with acellular buffalo omasum laminae) -- 6.5 Conclusion -- References -- 7 Gall bladder-derived extracellular matrix scaffolds -- 7.1 Introduction -- 7.2 Anatomy of gallbladder (cholecyst) -- 7.3 Cholecyst-derived extracellular matrix. , 7.4 Preparation of acellular buffalo cholecyst-derived extracellular matrix -- 7.4.1 Macroscopic observations -- 7.4.2 Microscopic observations -- 7.4.3 Scanning electron microscopic observations -- 7.4.4 DNA contents analysis -- 7.5 Preparation of acellular pig cholecyst-derived extracellular matrix -- 7.5.1 Macroscopic observations -- 7.5.2 Microscopic observations -- 7.5.3 Scanning electron microscopic observations -- 7.5.4 DNA contents analysis -- 7.6 Preparation of acellular goat cholecyst-derived extracellular matrix -- 7.6.1 Preparation of soapnut pericarp extract -- 7.6.2 Preparation of acellular goat gall bladder matrix -- 7.6.3 Microscopic observations -- 7.6.4 DAPI staining: (4, 6-diamidino-2-phenylindole 2Hcl) -- 7.6.5 Scanning electron microscopic observations -- 7.6.6 DNA contents analysis -- 7.7 Experimental evaluation of buffalo cholecyst-derived extracellular matrix in a rat model -- 7.7.1 Animals and ethics statement -- 7.7.2 Skin wound creation and implantation -- 7.7.3 Wound contraction -- 7.7.4 Gross observations/planimetry -- 7.7.5 Immunological observations -- 7.7.5.1 Humoral response -- 7.7.5.2 Cell-mediated immune response -- 7.7.6 Histopathological observations -- 7.8 Experimental evaluation of pig cholecyst-derived extracellular matrix in a rat model -- 7.8.1 Skin wound creation and implantation -- 7.8.2 Wound contraction -- 7.8.3 Gross observations/planimetry -- 7.8.4 Immunological observations -- 7.8.4.1 Humoral response -- 7.8.4.2 Cell-mediated immune response -- 7.8.5 Histological observations -- 7.9 Conclusion -- References -- 8 Aorta-derived extracellular matrix scaffolds and clinical application -- 8.1 Introduction -- 8.2 Optimization of protocols for decellularization of buffalo aorta -- 8.2.1 Group A -- 8.2.2 Group B -- 8.2.3 Optimization of protocols for preparation of acellular aortic matrix -- 8.2.4 Group A. , 8.2.5 Protocol A1 -- 8.2.6 Protocol A2 -- 8.2.7 Protocol A3 -- 8.2.8 Protocol A4 -- 8.2.9 Protocol A5 -- 8.2.10 Protocol A6 -- 8.2.11 Group B -- 8.2.12 Protocol B1 -- 8.2.13 Protocol B2 -- 8.2.14 Protocol B3 -- 8.2.15 Protocol B4 -- 8.2.16 Protocol B5 -- 8.2.17 Protocol B6 -- 8.3 Preparation and characterization of the buffalo aortic matrix -- 8.3.1 Histological observations -- 8.3.2 Scanning electron microscopic (SEM) observations -- 8.3.3 DNA extraction, quantification, and purity -- 8.3.4 Fourier transform infrared (FTIR) spectroscopy -- 8.4 In vivo biocompatibility determination of acellular aortic matrix -- 8.4.1 Surgical procedure -- 8.4.2 Macroscopic observations -- 8.4.3 Microscopic observations -- 8.4.4 Immunological studies -- 8.4.5 Lymphocyte proliferation assay -- 8.4.5.1 Preparation of antigen -- 8.4.5.2 Peripheral blood lymphocytes -- 8.4.5.3 Splenocytes culture -- 8.4.5.4 ELISA -- 8.4.6 Molecular weight analysis -- 8.5 Clinical applications in different species of animals -- 8.6 Conclusion -- References -- 9 Pericardium-derived extracellular matrix scaffolds -- 9.1 Introduction -- 9.2 Preparation of acellular goat pericardium matrix -- 9.3 Crosslinking of native and acellular goat pericardium matrix -- 9.4 Preparation of acellular buffalo pericardium matrix -- 9.5 Crosslinking of native and acellular buffalo pericardium matrix -- 9.5.1 Gross observations -- 9.5.1.1 Concentration of solution -- 9.5.1.2 Duration of treatment -- 9.5.1.3 Temperature -- 9.5.2 In vitro enzymatic degradation -- 9.5.2.1 In vitro collagenase enzymatic degradation -- 9.5.2.2 In vitro elastase enzymatic degradation -- 9.5.2.3 In vitro trypsin enzymatic degradation -- 9.5.3 Free amino group contents determination -- 9.5.4 Moisture content analysis -- 9.5.5 Molecular weight analysis -- 9.5.6 In vitro cell cytotoxicity -- 9.6 In vivo evaluation in a rabbit model. , 9.6.1 Macroscopic observations.
    Additional Edition: ISBN 0-443-26470-8
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages