Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge, MA :Elsevier Ltd.,
    UID:
    almahu_9949876144502882
    Format: 1 online resource (346 pages)
    Edition: First edition.
    ISBN: 0-443-15831-2
    Series Statement: Woodhead Publishing Series in Electronic and Optical Materials Series
    Note: Front Cover -- Upconversion Nanocrystals for Sustainable Technology -- Upconversion Nanocrystals for Sustainable Technology -- Copyright -- Contents -- Contributors -- Preface -- One - Introductions to upconversion nanocrystals for sustainable technologies -- 1.1 Introduction -- 1.2 Upconversion nanocrsytal -- 1.2.1 Synthesis strategies -- 1.3 Properties and mechanism -- 1.3.1 Excited state absorption -- 1.3.2 Energy transfer upconversion -- 1.3.3 Cooperative energy transfer -- 1.4 Sustainable technologies -- 1.4.1 Laser -- 1.4.2 WLEDs -- 1.4.3 Solar cell -- 1.4.4 Bioimaging -- 1.4.5 Optical thermometry -- 1.4.6 Water treatment -- 1.5 Conclusion and future prospective -- References -- Two - Shape and size control synthesis techniques for the preparation of upconversion nanocrystals -- 2.1 Introduction -- 2.2 Selection of host matrix and mechanism -- 2.3 Novel methods and experimental techniques in synthesizing UC nanomaterials -- 2.3.1 Controlling the morphology of the upconversion nanocrystals -- 2.3.2 Microwave method -- 2.3.3 Sol-gel method -- 2.3.4 Solvo/hydrothermal method -- 2.3.5 Reverse microemulsion -- 2.3.6 Ligand exchange -- 2.3.7 Homogeneous precipitation -- 2.3.8 Pechini method -- 2.3.9 Wet chemical method -- 2.3.10 Flame aerosol synthesis -- 2.3.11 Structural and size-dependent property -- 2.3.12 Optical properties of upconversion nanomaterials -- 2.3.13 Application in some novel applications of upconversion nanomaterials -- 2.4 Future prospective and conclusion -- References -- Three - Lanthanide-doped molybdate host materials for photonics devices -- 3.1 Introduction -- 3.2 Materials preparation and synthesis -- 3.2.1 Wet chemical synthesis -- 3.2.2 Combustion method -- 3.2.3 Solid-state reaction method -- 3.3 Results and discussion -- 3.3.1 UC in BaMoO4:Er3+, Tm3+, Yb3+ phosphors -- 3.3.2 UC phosphors for temperature sensing. , 3.3.3 UC phosphor for magnetic resonance imaging -- 3.3.4 UCL in Yb3+/Er3+ co-doped KLu(MoO4)2 phosphor -- 3.3.5 UC phosphor for photonic applications -- 3.3.6 Eu3+-doped Sr2MgMoO6 phosphor for fingerprint applications -- 3.3.7 UC phosphors for silicon solar cells -- 3.3.8 Phosphors for w-LEDs -- 3.3.9 Phosphor for optical temperature sensors -- 3.4 Conclusion -- References -- Four - Development of upconverting vanadate phosphors for fluorescent imaging technology -- 4.1 Introduction -- 4.2 Basic properties of upconverting vanadate phosphors -- 4.3 Methods of synthesis and morphology of upconverting vanadate phosphors -- 4.3.1 The solid-state synthesis -- 4.3.2 Sol-gel synthesis -- 4.3.3 Hydrothermal (solvothermal) synthesis -- 4.3.4 The spray pyrolysis method -- 4.3.5 Microwave synthesis -- 4.3.6 The precipitation/co-precipitation method -- 4.3.7 Reverse micelles synthesis -- 4.4 Structural properties of upconverting vanadate phosphors -- 4.5 Optical properties of upconverting vanadate phosphors -- 4.5.1 Upconversion emission under excitation wavelength at 980nm -- 4.5.2 Upconversion emission under excitation wavelength at 808nm -- 4.6 Application of upconverting vanadate phosphors -- 4.7 Conclusion -- Acknowledgments -- References -- Five - Synthesis, upconversion properties, and applications of Ln3+-doped aluminates phosphor -- 5.1 Introduction -- 5.1.1 Some characteristics properties and possible applications of lanthanide-doped aluminates phosphors -- 5.2 Characteristic of lanthanides activator -- 5.3 UCL in Ln3+-doped aluminate phosphor -- 5.4 Synthesis of aluminate phosphors -- 5.4.1 Combustion synthesis -- 5.4.2 Sol-gel method -- 5.4.3 Solid-state reaction -- 5.5 Applications -- 5.5.1 Optical thermometry -- 5.6 Conclusion -- References -- Six - NIR-Visible luminescence and applications of Er3+, Ho3+, and Tm3+/Yb3+ co-doped glasses. , 6.1 Introduction -- 6.1.1 Stark structure of the spectra of rare-earth ions -- 6.2 Upconversion luminescence -- 6.2.1 Energy level structure of Er3+ ions -- 6.2.2 Ytterbium glasses in modern systems material processing -- 6.2.3 Upconversion luminescence in Er3+-doped glasses -- 6.2.4 Energy level structure of Ho3+ ion -- 6.2.5 Upconversion luminescence in Ho3+-doped glasses -- 6.2.6 Energy level structure of Tm3+ ion -- 6.2.6.1 3F4 manifold -- 6.2.6.2 3H5 manifold -- 6.2.6.3 3H4 manifold -- 6.2.6.4 3F2,3 manifolds -- 6.2.6.5 1G4 manifold -- 6.2.7 Upconversion luminescence in Tm3+ doped glasses -- 6.3 Summary -- Acknowledgments -- References -- Seven - Photocatalytic and sensing properties of rare-earth doped tungstate upconverting host materials -- 7.1 Introduction -- 7.1.1 Photocatalysis -- 7.1.2 Upconversion-based photocatalysis -- 7.2 Synthesis approaches of tungsten-based materials -- 7.2.1 Sol-gel method -- 7.2.2 Solid-state reaction method -- 7.2.3 Co-precipitation method -- 7.2.4 Hydrothermal/solvothermal -- 7.2.5 Top-seeded solution growth -- 7.2.6 Pechini method -- 7.2.7 Melt-quenching -- 7.3 Upconversion optical thermometry by lanthanide doped tungstates -- 7.4 Conclusions -- 7.5 Future perspective -- References -- Eight - Rare earth-doped oxide upconversion nanocrystals for photovoltaic applications -- 8.1 Introduction -- 8.2 Upconversion mechanism -- 8.2.1 Upconversion in rare earth ions doping -- 8.2.1.1 Upconversion in Er3+single ion -- 8.2.1.2 Upconversion in Yb3+-Er3+co-doped ions -- 8.2.1.3 Upconversion in Yb3+-Ho3+co-doped ions -- 8.2.1.4 Upconversion in Yb3+-Tb3+co-doped ions -- 8.3 Importance of oxide-based host -- 8.4 Upconversion in RE doped oxide nanocrystals -- 8.4.1 Titanium dioxide (TiO2):RE upconversion -- 8.4.2 Zinc oxide (ZnO):RE upconversion -- 8.4.3 Yttrium oxide (Y2O3):RE upconversion. , 8.5 Preparation of RE ion-doped oxide host nanocrystals -- 8.5.1 Solid-state reaction method -- 8.5.2 Combustion method -- 8.5.3 Sol-gel method -- 8.5.4 Hydrothermal method -- 8.5.5 Co-precipitation method -- 8.6 Photovoltaic applications -- 8.6.1 c-Si solar cells -- 8.6.2 Dye-sensitized solar cells -- 8.6.3 Perovskite solar cells -- 8.7 Conclusion -- Acknowledgments -- References -- Nine - Upconversion properties of lanthanide-doped core/shell nanostructures and their emerging application -- 9.1 Introduction -- 9.2 Brief ideas on UC mechanisms -- 9.3 Engineering efficient UCNPs -- 9.4 UCNPs with core/shell structures -- 9.4.1 Homogeneous core/shell UCNPs -- 9.4.2 Heterogeneous core/shell UCNPs -- 9.4.3 Active core/active shell UCNPs -- 9.5 Emerging applications of UCNPs -- 9.5.1 Photovoltaic cells -- 9.5.2 Nanothermometry -- 9.5.3 Anticounterfeiting -- 9.5.4 Biosensing and bioassays -- 9.5.5 In-vitro and in-vivo bioimaging -- 9.5.6 Drug delivery and photodynamic therapy -- 9.6 Concluding remarks -- Acknowledgment -- References -- Ten - Synthesis and upconversion properties of rare-earth co-doped composite phosphors -- 10.1 Introduction -- 10.2 Experimental techniques -- 10.2.1 Preparation of the samples -- 10.2.2 Characterization techniques -- 10.2.2.1 Structural characterization techniques -- XRD -- SEM and TEM -- 10.2.2.2 Thermal characterization techniques -- Thermogravimetric analysis -- Differential thermal analysis -- 10.2.2.3 Optical characterization techniques -- Infrared spectroscopy -- UV-visible electronic absorption spectroscopy -- Photoluminescence spectroscopy -- 10.3 Material characterization -- 10.3.1 XRD of TiO2-SiO2 gel -- 10.3.2 SEM analysis of undoped TiO2 samples -- 10.3.3 SEM analysis of Nd3+-doped TiO2-SiO2 gel samples -- 10.3.4 TEM analysis of sol-gel prepared undoped TiO2 powder. , 10.3.5 TEM analysis of sol-gel prepared Nd3+-doped TiO2-SiO2 composite gel -- 10.3.6 FTIR analysis of undoped TiO2 and Nd3+-doped TiO2-SiO2 nanocomposite samples -- 10.3.7 Absorption spectrum of Nd3+ ions in TiO2-SiO2 nanocomposite gel -- 10.3.8 Absorption spectrum of Ho3+ ions in TiO2-SiO2 nanocomposite gel -- 10.3.9 Photoluminescence upconversion spectra of Nd3+-doped TiO2-SiO2 nanocomposite gel -- 10.3.10 Photoluminescence upconversion spectra of Ho3+ and Er3+-doped TiO2-SiO2 nanocomposite gel -- 10.4 Highlights -- 10.5 Conclusion -- References -- Eleven - Shape-size-controlled synthesis techniques and applications of fluoride upconverting nanocrystals -- 11.1 Introduction -- 11.2 Experimental techniques -- 11.2.1 Synthesis techniques of fluoride nanocrystals -- 11.2.1.1 Coprecipitation method -- 11.2.1.2 Microemulsion -- 11.2.1.3 Sol-gel method -- 11.2.2 Size- and shape-controlled synthesis of fluoride nanocrystals -- 11.2.2.1 Hydrothermal/solvothermal synthesis -- Liquid solid solution phase transfer hydrothermal synthesis -- 11.2.2.2 Thermal decomposition method -- 11.2.2.3 High-temperature coprecipitation -- 11.3 Applications of fluoride upconverting nanocrystals -- 11.3.1 Bioimaging -- 11.3.2 Drug delivery and phototherapy -- 11.3.3 Luminescence thermometry -- 11.3.4 Fingerprint and security applications -- 11.3.5 Solar cell applications -- 11.4 Concluding remarks -- References -- Index -- Back Cover.
    Additional Edition: ISBN 0-443-15830-4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages