UID:
almahu_9949972233702882
Umfang:
1 online resource (519 pages)
Ausgabe:
1st ed.
ISBN:
9781789060119
Anmerkung:
Cover -- Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Acronyms -- Chapter 1: General introduction and book layout -- ABSTRACT -- 1.1 INTRODUCTION -- 1.2 METROLOGY IN A BROADER SENSE REFLECTING ON UDSM -- 1.3 MAIN ELEMENTS IN UDSM METROLOGY -- 1.4 STRUCTURE OF THE BOOK AND THE LINKS BETWEEN CHAPTERS -- 1.5 MESSAGE BOXES -- REFERENCES -- Chapter 2: Sensors for rain measurements -- ABSTRACT -- 2.1 INTRODUCTION -- 2.2 RAIN GAUGES -- 2.3 DISDROMETERS -- 2.4 WEATHER RADAR -- 2.4.1 Introduction -- 2.4.2 Temporal and spatial resolution of radar data -- 2.4.3 Radar data quality, rainfall estimation, and radar data adjustment -- 2.4.4 Summary -- 2.5 MICROWAVE LINKS -- 2.6 SUMMARY AND TRANSITION -- REFERENCES -- Chapter 3: Water level and discharge measurements -- ABSTRACT -- 3.1 INTRODUCTION -- 3.2 WATER LEVEL MEASUREMENT -- 3.2.1 The simplest sensor: a ruler -- 3.2.2 Pressure sensor -- 3.2.3 Ultrasonic sensor -- 3.2.4 Radar sensor -- 3.2.5 Summary -- 3.3 VELOCITY MEASUREMENTS -- 3.3.1 Ultrasonic travel time -- 3.3.2 Acoustic Doppler flowmeter -- 3.3.3 Velocity profilers -- 3.3.4 Free surface velocity measurements -- 3.3.5 Electromagnetic sensor -- 3.3.6 Manning-Strickler relation -- 3.3.7 Summary -- 3.4 DIRECT DISCHARGE MEASUREMENTS -- 3.4.1 Pre-calibrated devices -- 3.4.2 Q(h) relation using laboratory physical scale models -- 3.4.3 Chemical tracing -- 3.4.3.1 Principle -- 3.4.3.2 A nine step operation protocol -- 3.4.3.3 Examples of application -- 3.4.3.3.1 Rhodamine WT and de-icing salt tracings vs. flowmeter measurement of small discharges in a large sewer -- 3.4.3.3.2 Rhodamine WT tracing for two monitoring stations: large pipe, large discharges -- 3.4.4 Pumping stations -- 3.4.4.1 Introduction -- 3.4.4.2 Theoretical considerations -- 3.4.4.3 Quantities to be measured -- 3.4.4.4 Permanent monitoring set-up.
,
3.4.4.5 Temporary measurements -- 3.4.4.6 Incidental measurements -- 3.4.4.6.1 Measuring set-up for determining the hydraulic characteristic of the pressure main -- 3.4.4.6.2 Measuring set-up for determining the hydraulic characteristic of the pump -- 3.4.5 Use of computational fluid dynamics -- 3.4.6 Summary -- 3.5 INFILTRATION AND EXFILTRATION -- 3.5.1 Introduction -- 3.5.2 Large scale measurement of infiltration -- 3.5.3 Detailed monitoring of in- or exfiltration -- 3.5.3.1 General -- 3.5.3.1.1 Listening stick -- 3.5.3.1.2 Smoke testing -- 3.5.3.1.3 Dye testing -- 3.5.3.1.4 Flow monitoring -- 3.5.3.1.5 Pressure test -- 3.5.3.1.6 Tracing methods -- 3.5.3.1.7 Sampling and modelling -- 3.5.3.1.8 Distributed temperature sensing -- 3.5.3.1.9 Time domain reflectometry -- 3.5.3.1.10 Infrared thermography -- 3.5.3.1.11 Smartball -- 3.5.3.1.12 SAHARA -- 3.5.3.1.13 Leak noise correlation -- 3.5.3.1.14 Magnetic flux leakage -- 3.5.3.1.15 Ground penetrating radar -- 3.5.3.1.16 Multi-sensor systems -- 3.5.3.2 Electrical conductivity-based methods -- 3.5.3.2.1 Focused electro leak location (FELL) -- 3.5.3.2.2 Electrical resistivity tomography (ERT) -- 3.5.3.3 Tracer methods -- 3.5.3.3.1 QUEST-C method -- 3.5.3.3.2 DEST method -- 3.6 SUMMARY AND TRANSITION -- REFERENCES -- Chapter 4: Measuring the water balance in stormwater control measures -- ABSTRACT -- 4.1 INTRODUCTION -- 4.2 DESCRIPTION OF THE WATER BALANCE -- 4.3 INFLOW, BYPASS, OUTFLOW AND OVERFLOW -- 4.3.1 Inflows -- 4.3.1.1 Obstruction of the flow sensor caused through the accumulation of sediment or debris -- 4.3.1.2 Transition of flows from subcritical to supercritical -- 4.3.1.3 Backwater influence from within the SCM itself during certain periods -- 4.3.1.4 Rating curve -- 4.3.2 Outflows -- 4.3.3 Bypass -- 4.4 STORAGE VOLUMES -- 4.5 INFILTRATION AND EXFILTRATION -- 4.5.1 Measuring infiltration.
,
4.5.1.1 Whole-of-system measurement -- 4.5.1.2 Infiltrometer-based measurement -- 4.5.2 Measuring exfiltration -- 4.5.3 Measuring groundwater intrusion -- 4.6 EVAPOTRANSPIRATION -- 4.6.1 Calculation of PET from meteorological data -- 4.6.2 Direct measurement of evapotranspiration, transpiration and evaporation -- 4.6.2.1 Flux chambers -- 4.6.2.2 Lysimetry -- 4.6.2.3 Sapflow -- 4.6.3 Stomatal conductance -- 4.6.4 Estimation of ET from the water balance -- 4.7 SUMMARY AND TRANSITION -- REFERENCES -- Chapter 5: Data communication and storage -- ABSTRACT -- 5.1 INTRODUCTION -- 5.2 FROM IN SITU SENSORS TO DATA FILES - DATATRANSFER METHODS -- 5.3 FROM DATA FILES TO STRUCTURED DATABASE -- 5.3.1 Principles and advantages of relational databases -- 5.3.2 Existing DBMS and software solutions -- 5.3.3 Typical data structuration for environmental time series -- 5.3.4 Supply of information to databases -- 5.4 DATABASE INTEROPERABILITY -- 5.4.1 Definition and interest -- 5.4.2 Interoperability standards and examples -- 5.4.3 Practical recommendations -- 5.5 CASE STUDIES -- 5.5.1 Case study 1: BDOH (Base de Données des Observatoires en Hydrologie), a database for the storage and publication of long-term water observation data -- 5.5.1.1 Context and objectives -- 5.5.1.2 Structure and main features -- 5.5.1.3 Advantages and drawbacks -- 5.5.2 Case study 2: DoMinEau, an Excel-based database for water quality monitoring -- 5.5.2.1 Context and objectives -- 5.5.2.2 Structure and main features -- 5.5.2.3 Advantages and drawbacks -- 5.5.3 Case study 3: Data Grand Lyon - open data portal -- 5.5.4 Case study 4: local wireless based system for flood risk assessment and reduction - CENTAUR -- 5.6 SUMMARY AND TRANSITION -- REFERENCES -- Chapter 6: Design of a monitoring network: from macro to micro design -- ABSTRACT -- 6.1 INTRODUCTION -- 6.2 MACRO DESIGN -- 6.2.1 General.
,
6.2.2 Choosing locations as a combinatorial problem -- 6.2.3 Considerations in choosing locations -- 6.2.4 Example of using a model as a design aid -- 6.2.5 Timescales, sampling frequency and measuring uncertainty -- 6.2.5.1 Application of a model to quantify timescales of a system -- 6.2.5.2 Upper and lower limits of the sampling frequency related to measurement uncertainty -- 6.2.5.2.1 Lower limit -- 6.2.5.2.2 Upper limit -- 6.2.5.2.3 Examples -- 6.2.6 Networks of rain gauges -- 6.3 MICRO DESIGN: FROM THE MACRO SAMPLING DESIGN PLAN TO UP AND RUNNING MONITORING STATIONS -- 6.3.1 Definition of the goals: long-term, mid and short-term installation - 24/7 and event sampling -- 6.3.2 Definition of the needs: hardware, software, maintenance, trained people -- 6.3.2.1 Step 1: selection of sensors -- 6.3.2.2 Step 2: data acquisition and control system -- 6.3.2.3 Step 3: communication network -- 6.3.2.4 Step 4: software and data storage solutions -- 6.3.2.5 Step 5: maintenance -- 6.3.2.6 Step 6: trained people and training -- 6.3.2.7 Step 7: general design and drawing -- 6.3.2.8 Step 8: optimization -- 6.3.2.9 Step 9: detailed 3D drawing of the monitoring station -- 6.3.3 First tests -- 6.3.3.1 Calibrate -- 6.3.3.2 Run, test, verify and correct -- 6.3.3.2.1 Getting the data as expected? -- 6.3.3.2.2 Redundancy, tracing experiment -- 6.3.3.2.3 Verify with data -- 6.3.3.3 Conclusion after the first tests -- 6.3.4 Once the monitoring station is operational -- 6.3.4.1 Site book -- 6.3.4.2 Continuous training of involved people -- 6.3.5 Example of micro design -- 6.4 ADVANCED AND EMERGING MONITORING TECHNOLOGIES -- 6.4.1 Event detection -- 6.4.2 DTS for infiltration -- 6.4.3 Optical methods for determining flow velocity fields -- 6.5 SUMMARY AND TRANSITION -- REFERENCES -- Chapter 7: Operation and maintenance -- ABSTRACT -- 7.1 INTRODUCTION.
,
7.2 HEALTH AND SAFETY -- 7.2.1 Health and safety management -- 7.2.1.1 Risk mitigation planning -- 7.2.1.2 Temporal dimension of safety management -- 7.2.2 Situation specific risk mitigation -- 7.2.2.1 Working in traffic-affected areas -- 7.2.2.1.1 Location and activities -- 7.2.2.1.2 Hazards and risks -- 7.2.2.1.3 Measures -- 7.2.2.2 Accessing underground structures and confined spaces -- 7.2.2.2.1 Location and activities -- 7.2.2.2.2 Hazards and risks -- 7.2.2.2.3 Measures -- 7.2.2.3 Working in and above water -- 7.2.2.3.1 Location and activities -- 7.2.2.3.2 Hazards and risks -- 7.2.2.3.3 Measures -- 7.2.2.4 Working in potentially hazardous atmospheres -- 7.2.2.4.1 Location and activities -- 7.2.2.4.2 Hazards and risks -- 7.2.2.4.3 Measures -- 7.2.2.5 Working with hazardous substances and biologic agents -- 7.2.2.5.1 Location and activities -- 7.2.2.5.2 Hazards and risks -- 7.2.2.5.3 Measures -- 7.3 OPERATION -- 7.3.1 General ideas on operation -- 7.3.2 Operation of rain measurement equipment -- 7.3.2.1 Site specification -- 7.3.2.2 Wind shields and bird spikes -- 7.3.2.3 Monitoring duration -- 7.3.3 Operation of discharge measurement -- 7.3.3.1 Preparation -- 7.3.3.2 Continuous monitoring -- 7.3.3.3 Monitoring campaigns -- 7.4 MAINTENANCE -- 7.4.1 General ideas on maintenance -- 7.4.2 Planning maintenance -- 7.4.3 Maintenance of rain measurement equipment -- 7.4.3.1 Tipping bucket rain gauges -- 7.4.3.2 Weighing rain gauges -- 7.4.4 Maintenance for discharge measurement -- 7.4.4.1 Battery exchange/energy management -- 7.4.4.2 Readout of data -- 7.4.4.3 Reparation or improvement of the systems -- 7.4.4.4 Calibration -- 7.4.4.5 Cleaning -- 7.4.4.6 Set internal logger clocks -- 7.4.4.7 Exchange desiccant of ventilated water level sensors -- 7.4.4.8 Standard procedure -- 7.4.4.9 Flow control structure maintenance -- 7.5 SITE VISITS.
,
7.6 SENSOR CALIBRATION AND VERIFICATION.
Weitere Ausg.:
Print version: Clemens-Meyer, Francois Metrology in Urban Drainage and Stormwater Management: Plug and Pray London : IWA Publishing,c2021 ISBN 9781789060102
Sprache:
Englisch
Schlagwort(e):
Electronic books.