UID:
almahu_9949984196802882
Format:
1 online resource (622 pages)
ISBN:
9780128210635
,
012821063X
,
9780128210628
,
0128210621
Note:
Front Cover -- Stereochemistry -- Copyright Page -- Contents -- About the authors -- Foreword -- Preface -- I. Fundamentals of stereochemistry -- 1 Basic concepts of structure and stereochemistry -- 1.1 Introduction -- 1.2 A brief history -- 1.3 Molecular geometry -- 1.3.1 Van der Waals' radius -- 1.3.2 Bond length -- 1.3.3 Bond angle -- 1.3.4 Dihedral angle -- 1.4 Isomers -- 1.4.1 Conformational isomers -- 1.4.2 Configuration and configurational isomers -- 1.5 Projection formulae -- 1.5.1 Fischer projection -- 1.5.2 Newman projection -- 1.5.3 Sawhorse projection -- 1.5.4 Inter-conversion of Fischer projection to Newman projection or Sawhorse projection -- 1.5.5 Flying wedge/zig-zag projection formula -- 1.5.6 Inter-conversion of Fischer projection and zig-zag projection -- 1.6 Summary -- Questions and Problems -- References -- 2 Symmetry and point groups -- 2.1 Introduction -- 2.2 Symmetry elements and symmetry operations -- 2.2.1 Simple or proper axis of symmetry (Cn) and proper rotational operations (Cnk) -- 2.2.2 Plane of symmetry (σ) - Operation of reflection (σ) -- 2.2.3 Centre of symmetry (i) operation of inversion (i) -- 2.2.4 Alternating or rotation-reflection axis of symmetry (Sn) -- 2.3 Point groups and their classification -- 2.3.1 Linear molecules with high symmetry (Special group) -- 2.3.2 Nonlinear molecules with high symmetry and molecules with Platonic group structures -- 2.3.3 Nonlinear molecules with high Cn axis (without platonic group molecules) -- 2.3.4 Nonlinear molecules with absence of Cn, axis n≥2 -- 2.4 The chiral compounds and the difference between asymmetry and dissymmetry -- 2.5 Symmetry number (σ) -- 2.5.1 Practical method to assign the point group of given organic compound -- 2.6 Summary -- Questions and Problems -- References -- 3 Elements of chirality and chiral stereoisomerism -- 3.1 Introduction.
,
3.2 Molecules with central chirality -- 3.2.1 Configurational descriptors for molecules with central chirality -- 3.2.1.1 The D-L system -- 3.2.1.2 The R/S system -- 3.3 Molecules with two or more chiral centres -- 3.3.1 Constitutionally unsymmetrical chiral molecules -- 3.3.1.1 Erythro and Threo -- 3.3.1.2 Pref and Parf -- 3.3.1.3 Like (l) and unlike (u) -- 3.3.1.4 Anti and Syn notations -- 3.3.1.5 Brewster's system -- 3.3.2 Stereoisomerism in constitutionally symmetrical chiral molecules -- 3.3.3 Stereoisomerism in cyclic molecules -- 3.4 Molecules with the presence of chiral axis -- 3.4.1 Assignment of configurational descriptors to molecules with presence of chiral axis -- 3.4.2 Allenes -- 3.4.3 Alkylidene cycloalkanes/Hemispiranes -- 3.4.4 Spiranes -- 3.4.5 Atropisomerism -- 3.4.6 Atropisomerism of biaryls, restricted rotation around sp2-sp2, C-C bond -- 3.4.7 Assignment of configurational descriptors to chiral biphenyls -- 3.4.8 Bridged biphenyls -- 3.5 Planar Chirality -- 3.5.1 Assignment of configurational descriptor to molecules with chiral plane -- 3.5.2 Cyclophanes and ansa compounds -- 3.5.3 Trans-Cyclooctene -- 3.5.4 Chiral ferrocenes -- 3.6 Helicity -- 3.7 Cyclostereoisomerism -- 3.8 Summary -- Questions and Problems -- References -- II. Enantiomer properties -- 4 Chiroptical properties: Origin and applications -- 4.1 Introduction -- 4.2 Optical activity -- 4.2.1 Origin of the optical activity -- 4.2.2 Circular Birefringence -- 4.2.3 Dissymmetric compounds and optical activity -- 4.2.4 Circular dichroism -- 4.3 Optical rotatory dispersion curves (ORD) -- 4.3.1 Cotton effect curves -- 4.3.2 The Cotton effect circular dichroism and optical rotatory dispersion curves -- 4.3.3 Applications of the plain optical rotatory dispersion curves -- 4.3.4 Applications of the Cotton effect optical rotatory dispersion/circular dichroism curves.
,
4.3.5 Empirical and semiempirical rules for conformational and configurational studies -- 4.4 The axial α-haloketone rule and its applications -- 4.5 Octant rule -- 4.5.1 Applications of the octant rule -- 4.6 Inherently symmetric or inherently dissymmetric optically active chromophores -- 4.7 Helicity rules for inherently chiral chromophores -- 4.7.1 α, β-Unsaturated ketone or enone -- 4.7.2 1,3-Conjugated dienes -- 4.7.3 Biaryls -- 4.7.4 Helicenes -- 4.8 Lowe's rule for allenes -- 4.9 Exciton coupling and dibenzoate chirality rule -- 4.10 Summary -- Questions and Problems -- References -- 5 Configurational analysis -- 5.1 Introduction -- 5.2 Methods for the determination of absolute configuration -- 5.2.1 Basic terminology of resonant X-ray scattering -- 5.2.2 Determination of absolute configuration using resonant X-ray scattering -- 5.2.3 Determination of absolute configuration by use of crystalline sponge-X-ray diffraction method -- 5.2.4 Crystal morphological changes for assignment of absolute configuration -- 5.2.5 Determination of absolute configuration using chiroptical methods -- 5.3 Correlative methods for determination of configurations -- 5.3.1 Chemical correlative methods of determination of configurations -- 5.3.1.1 Correlation of configuration without affecting the bonds to the chiral centre -- 5.3.1.2 Method of diastereoisomers -- 5.3.1.3 Correlation of configuration via use of concerted reactions and reactions with known stereochemical outcome -- 5.3.1.4 Correlation of configuration using predictable symmetry properties -- 5.3.2 Correlative methods based on comparison of optical rotations -- 5.3.2.1 Rule of shift -- 5.3.2.2 Rule of optical superposition -- 5.3.2.3 Hudson's rule of isorotation -- 5.3.2.4 Mills' rule -- 5.3.3 Quasi-racemate formation between two different molecules -- 5.3.4 NMR Methods.
,
5.3.4.1 Use of CSA for the assignment of absolute configuration -- 5.3.4.2 Use of CDA for the assignment of absolute configuration -- 5.3.4.3 Use of CSR for the assignment of absolute configuration -- 5.4 Assignment of configuration based on asymmetric synthesis -- 5.4.1 Cram's Rule -- 5.4.2 Prelog's rule -- 5.4.3 Sharpless asymmetric epoxidation -- 5.5 Horeau's method of assignment of configuration based on kinetic resolution -- 5.6 'Stand-alone' methods for determination of configuration -- 5.6.1 Assignment of configuration to an alkylidenecycloalkane via stereoselective synthesis -- 5.6.2 Assignment of absolute configuration to (-)-trans-cyclooctene -- 5.6.3 Determination of absolute configuration of allenes -- 5.6.3.1 Use of stereoselective (concerted) reaction for assignment of configuration -- 5.6.3.2 Conversion of an enantiomer of allene to compound of known configuration -- 5.6.4 Assignment of absolute configuration to a spiro compound -- 5.6.5 Assignment of absolute configuration to a biphenyl derivative -- 5.7 Methods to distinguish between configurations of diastereoisomers -- 5.7.1 Auwer's Skita Rule -- 5.7.2 UV-vis spectroscopy -- 5.7.3 IR Spectroscopy -- 5.7.4 X-ray diffraction studies -- 5.7.5 NMR Spectroscopy -- 5.7.5.1 Chemical shifts -- 5.7.5.2 Coupling constant -- 5.7.5.3 NOESY experiments -- 5.8 Chemical method -- 5.9 Summary -- Questions and Problems -- References -- 6 Racemates: Properties and methods of resolution -- 6.1 Introduction: Properties of enantiomers and racemates -- 6.1.1 Melting point phase diagrams -- 6.1.2 Crystal shape/morphology -- 6.1.3 Density of racemic modifications in solid state -- 6.1.4 Solubility behaviour of racemic modifications -- 6.1.5 IR spectroscopy -- 6.1.6 NMR Spectroscopy -- 6.1.7 X-ray diffraction studies -- 6.1.8 Chromatographic behaviour -- 6.1.9 Vapour Pressure -- 6.2 Resolution of racemates.
,
6.2.1 Resolution of racemic modification exhibiting conglomerate behaviour: Spontaneous crystallisation -- 6.2.2 Formation of diastereomeric salts or compounds followed by preferential crystallisation -- 6.2.3 Resolution though formation of diastereomeric complexes -- 6.2.4 Chromatographic resolutions -- 6.2.5 Resolution of racemates via equilibrium asymmetric transformation -- 6.2.6 Kinetic Resolutions of racemates -- 6.2.7 Dynamic Kinetic Resolutions -- 6.3 Racemisation processes -- 6.3.1 Formation of a resonance stabilized carbanions -- 6.3.2 Involvement of tautomeric species -- 6.3.3 Racemisations involving a stable carbocation intermediate -- 6.3.4 Racemisations involving a stable carbon-free radical intermediate -- 6.3.5 Opposite reactions occurring simultaneously -- 6.3.6 Racemisation encountered in DKR -- 6.3.7 Rotation around single bond -- 6.4 Summary -- Questions and Problems -- References -- III. Conformations and conformational analysis -- 7 Conformation of acyclic molecules -- 7.1 Introduction -- 7.2 Conformation -- 7.2.1 Torsional strain -- 7.2.2 Notations for torsion angle, the Klyne-Prelog method -- 7.3 Estimating strain energy -- 7.3.1 Cause of the potential energy barriers -- 7.4 Study of conformations due to rotation about sp3-sp3 single bond -- 7.4.1 Rotations around C-C bond -- 7.4.1.1 Conformations of ethane -- 7.4.1.2 Conformations of propane -- 7.4.1.3 Conformations of n-butane -- 7.4.1.4 Branched alkanes -- 7.4.2 Alkanes with polar substituents -- 7.4.3 Rotation around C-N single bond -- 7.4.4 Rotation around C-P single bond -- 7.4.5 Rotation around C-O single bond -- 7.4.6 Conformations due to rotation around sp3-sp2 single bond -- 7.4.7 Conformations due to rotation around sp2-sp2 single bond -- 7.5 Spectral/analytical/theoretical means of internal rotation studies.
,
7.5.1 Molecular mechanics and quantum mechanical approaches to estimate energies of molecules in different arrangements.
Language:
English