Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    New York, NY : Springer New York
    UID:
    b3kat_BV042411128
    Format: 1 Online-Ressource (X, 214p. 94 illus)
    ISBN: 9781461230946 , 9781461277958
    Note: This monograph considers engineering systems with random parame­ ters. Its context, format, and timing are correlated with the intention of accelerating the evolution of the challenging field of Stochastic Finite Elements. The random system parameters are modeled as second order stochastic processes defined by their mean and covari­ ance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used' to represent these processes in terms of a countable set of un correlated random vari­ ables. Thus, the problem is cast in a finite dimensional setting. Then, various spectral approximations for the stochastic response of the system are obtained based on different criteria. Implementing the concept of Generalized Inverse as defined by the Neumann Ex­ pansion, leads to an explicit expression for the response process as a multivariate polynomial functional of a set of un correlated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral repre­ sentation in terms of the Polynomial Chaoses is identified. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials
    Language: English
    Keywords: Strukturmechanik ; Stochastischer Prozess ; Finite-Elemente-Methode ; Finite-Elemente-Methode ; Stochastische Mechanik ; Stochastisches System
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages