Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    b3kat_BV042421455
    Format: 1 Online-Ressource (XII, 274 p)
    ISBN: 9781475733082 , 9781441948496
    Series Statement: Nonconvex Optimization and Its Applications 52
    Note: This text is meant to be an introduction to critical point theory and its applications to differential equations. It is designed for graduate and postgraduate students as well as for specialists in the fields of differential equations, variational methods and optimization. Although related material can be the treatment here has the following main purposes: found in other books, - To present a survey on existing minimax theorems, - To give applications to elliptic differential equations in bounded domains and periodic second-order ordinary differential equations, - To consider the dual variational method for problems with continuous and discontinuous nonlinearities, - To present some elements of critical point theory for locally Lipschitz functionals and to give applications to fourth-order differential equations with discontinuous nonlinearities, - To study homo clinic solutions of differential equations via the variational method. The Contents of the book consist of seven chapters, each one divided into several sections. A bibliography is attached to the end of each chapter. In Chapter I, we present minimization theorems and the mountain-pass theorem of Ambrosetti-Rabinowitz and some of its extensions. The concept of differentiability of mappings in Banach spaces, the Fnkhet's and Gateaux derivatives, second-order derivatives and general minimization theorems, variational principles of Ekeland [Ekl] and Borwein & Preiss [BP] are proved and relations to the minimization problem are given. Deformation lemmata, Palais-Smale conditions and mountain-pass theorems are considered
    Language: English
    Keywords: Minimax-Theorem ; Differentialgleichung
    URL: Volltext  (lizenzpflichtig)
    URL: Volltext  (lizenzpflichtig)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages