Format:
1 Online-Ressource (VIII, 392 p)
Edition:
1st ed. 1995
ISBN:
9789401102155
Series Statement:
Theory and Decision Library B, Mathematical and Statistical Methods 32
Content:
Non-Classical Logics and their Applications to Fuzzy Subsets is the first major work devoted to a careful study of various relations between non-classical logics and fuzzy sets. This volume is indispensable for all those who are interested in a deeper understanding of the mathematical foundations of fuzzy set theory, particularly in intuitionistic logic, Lukasiewicz logic, monoidal logic, fuzzy logic and topos-like categories. The tutorial nature of the longer chapters, the comprehensive bibliography and index make it suitable as a valuable and important reference for graduate students as well as research workers in the field of non-classical logics. The book is arranged in three parts: Part A presents the most recent developments in the theory of Heyting algebras, MV-algebras, quantales and GL-monoids. Part B gives a coherent and current account of topos-like categories for fuzzy set theory based on Heyting algebra valued sets, quantal sets of M-valued sets. Part C addresses general aspects of non-classical logics including epistemological problems as well as recursive properties of fuzzy logic
Additional Edition:
Erscheint auch als Druck-Ausgabe ISBN 9780792331940
Additional Edition:
Erscheint auch als Druck-Ausgabe ISBN 9789401040969
Additional Edition:
Erscheint auch als Druck-Ausgabe ISBN 9789401102162
Language:
English
Subjects:
Mathematics
Keywords:
Nichtklassische Logik
;
Fuzzy-Menge
;
Konferenzschrift
DOI:
10.1007/978-94-011-0215-5
URL:
Volltext
(URL des Erstveröffentlichers)