Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almafu_9959043108802883
    Format: 1 online resource (343 pages)
    Edition: 1st ed. 2019.
    ISBN: 1-4842-4335-8
    Content: Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using graphframes and see how to optimize your PySpark SQL code. PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You’ll also discover how to solve problems in graph analysis using graphframes. On completing this book, you’ll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases. You will: Understand PySpark SQL and its advanced features Use SQL and HiveQL with PySpark SQL Work with structured streaming Optimize PySpark SQL Master graphframes and graph processing.
    Note: Includes index. , Chapter 1: Introduction to PySparkSQL -- Chapter 2: Some time with Installation -- Chapter 3: IO in PySparkSQL -- Chapter 4 : Operations on PySparkSQL DataFrames -- Chapter 5 : Data Merging and Data Aggregation using PySparkSQL -- Chapter 6: SQL, NoSQL and PySparkSQL -- Chapter 7: Structured Streaming -- Chapter 8 : Optimizing PySparkSQL -- Chapter 9 : GraphFrames.
    Additional Edition: ISBN 1-4842-4334-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages