Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham, Switzerland :Springer,
    UID:
    almafu_9960943507302883
    Format: 1 online resource (242 pages)
    ISBN: 9783031117091
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Editor and Contributors -- About the Editor -- Contributors -- 1 Introduction to Single-Molecule Toroics -- 1.1 Background -- 1.2 The Birth of SMTs and Their Rapidly Evolving Family Tree -- 1.3 Classification of SMTs -- 1.4 The Impetus for Single-Molecule Toroic Research -- 1.5 Important Criteria and Techniques -- 1.6 Key Recent Advances and Future Challenges in SMTs -- References -- 2 Mixed d-f Block Single-Molecule Toroics -- 2.1 Introduction -- 2.2 "Pair of MIII-bridged Dy3 Triangles" of Type [MIIIDyIII6(OH)8(o-tol)12(NO3)(MeOH)5]∙3MeOH -- 2.2.1 Synthesis, Characterization and Structure of the Parent Heptanuclear Complex MIII == CrIII, Labelled CrDy6 [17] -- 2.2.2 Magnetic Properties and Ferrotoroidicity [17] -- 2.2.3 Micro-SQUID Hysteresis Loops on Single Crystals [17] -- 2.2.4 EPR Spectra [17] -- 2.2.5 Theory -- Single Ion Calculations-Blocking Barriers -- Relaxation Effects [17] -- 2.2.6 Magnetically Coupled States in MDy6 [19] -- 2.2.7 Role of Coupled Toroidal States in Spin Dynamics: Direct Simulation of the Magnetic Hysteresis Experiments [17, 19] -- 2.2.8 Spin Dynamics of Decoupled Toroidal Moments: The Case of the Dy3 Single Triangle -- 2.3 Changes in MIII, LnIII and Counter-anion, NO3− vs Cl−, in [MIIIDyIII6(OH)8(o-tol)12(NO3)(MeOH)5]∙3MeOH -- 2.3.1 Changing the LnIII Ion [18] -- 2.3.2 Changing the MIII Ion and Counter-Ion in MDy6 Species [19] -- 2.3.3 Toroido-Structural Correlations: Ways of Optimizing Ferrotoroidic Coupling [19] -- 2.3.4 Simulations of the Hysteretic Dynamics: Important Role of the M-Linker in Tuning Toroidal-Magnetic Zeeman Level Crossings [19] -- 2.4 Other Mixed d-block/f-block Single-Molecule Toroics with Ring Structures -- 2.4.1 Mn8Dy8 -- 2.4.2 Fe8Dy8 -- 2.4.3 Cu6Ln6 -- 2.4.4 Fe18Dy6 -- 2.5 Conclusions and Future Directions -- References. , 3 Single-Molecule Toroics: Design and Synthetic Strategies -- 3.1 Introduction -- 3.2 The Seminal Dy3 SMT: The Archetype of the Noncollinear Ising Model -- 3.3 New Ln3 (DyIII, TbIII, HoIII) and Dy4-SMT Systems -- 3.4 SMTs Based on Seminal Dy3 Triangle and Dy6 Wheel SMTs -- 3.5 Coupling Dy3 Triangular SMTs -- 3.6 Heterometallic 3d−4f Metallocycle SMTs -- 3.7 Conclusion -- References -- 4 Rationalization of Room-Temperature Single-Molecule Toroics via Exchange Coupling -- 4.1 Introduction -- 4.2 Survey of Typical SMTs -- 4.2.1 The Pioneering Dy3 SMT -- 4.2.2 Other Dysprosium SMTs -- 4.2.2.1 Trinuclear "4266308 Dy3"5267309 Triangle -- 4.2.2.2 Tetranuclear "4266308 Dy4"5267309 Squares -- 4.2.2.3 Hexanuclear "4266308 Dy6"5267309 Wheel -- 4.2.2.4 Tetranuclear "4266308 Dy4"5267309 Cubane -- 4.2.2.5 Octanuclear "4266308 Dy8"5267309 "Christmas-Star" -- 4.2.2.6 Coupled "4266308 Dy3"5267309 Triangle -- 4.2.2.7 Higher-Dimensional SMTs -- 4.2.3 Heterometallic 3d-4f SMTs -- 4.2.3.1 "4266308 Cr-Dy"5267309 Sandwich -- 4.2.3.2 "4266308 Mn-Dy"5267309 Wheel -- 4.2.3.3 "4266308 Fe-Dy"5267309 Wheel -- 4.2.3.4 "4266308 Fe-Dy"5267309 Sandwich -- 4.2.3.5 "4266308 Cu-Dy"5267309 Chain -- 4.2.3.6 "4266308 Cu-Dy"5267309 Wheel -- 4.2.3.7 "4266308 M-Dy"5267309 Sandwiches -- 4.3 Strategies on Pursuing Room-Temperature SMTs -- 4.3.1 The Exchange Coupling Approach -- 4.3.2 The Enhanced Toroidal Moment Approach -- 4.4 Conclusion and Perspective -- References -- 5 Spin-Electric Coupling, Magnetoelectricity, and Quantum Dynamics of Toroidal Moment in Lanthanide-Based Single Molecule Toroics -- 5.1 Introduction -- 5.1.1 The Concepts of Molecular Spintronics -- 5.1.2 Single Molecule Magnets -- 5.1.3 Single Molecule Toroics -- 5.2 The Toroidal Moment -- 5.2.1 Toroidal Moment in Electrodynamics -- 5.2.2 Toroidal Moment in Condensed Matter Physics. , 5.2.3 Toroidal Moment and Magnetoelectric Effect -- 5.3 Spin-Electric Coupling and Magnetoelectricity in Rare-Earth SMTs -- 5.3.1 The Model Hamiltonian -- 5.3.2 The Spin-Electric Interactions in SMTs -- 5.3.3 The Magnetoelectric Effect -- 5.3.3.1 The Case of Small Fields -- 5.3.3.2 The Case of Large Fields -- 5.3.3.3 The Case of Intermediary Fields -- 5.3.3.4 Non-equilibrium MEE and Rabi Oscillations -- 5.4 The Dynamics of Toroidal Moment in SMTs -- 5.4.1 Macroscopic Quantum Tunneling of the Toroidal Moment: The Quasi-Classical Approach -- 5.4.2 Toroidal Qubit -- 5.4.2.1 Scalability -- 5.4.2.2 Initialization -- 5.4.2.3 Coherence -- 5.4.2.4 Logical Gates -- 5.4.2.5 Reading Out -- 5.4.3 The Dynamics of Toroidal Qubit -- 5.4.4 The Quantum Coherent Effects -- 5.5 Conclusion -- References -- 6 Quantum Toroidicity in Single-Molecule Toroics: A Unifying Model Based on Heisenberg Spin Rings -- 6.1 Introduction -- 6.2 Toroidal Moments in Quantum Rings with Strong On-Site Magnetic Anisotropy -- 6.2.1 Theoretical Treatment of Non-collinear Quantum Spin Rings -- 6.2.1.1 The Model Hamiltonian -- 6.2.1.2 The Semi-classical Non-collinear Ising Picture: Emergence of SMTs -- 6.2.1.3 Quantum Fluctuations: Quantum Tunnelling of the Toroidal Moment -- 6.2.2 The Molecular Triangle -- 6.2.3 Hunting Quantum Toroidal Moments in Even-membered Rings -- 6.3 Emergence of Molecular Toroidal Moments in the Weak Spin-Orbit Coupling Limit -- 6.3.1 Spin Frustrated Triangles -- 6.3.2 Generalisation to Larger Rings -- 6.3.3 Magnetic Dipole-Dipole Coupling -- 6.3.4 Toroidal Moments in Heterometallic Rings -- 6.4 Conclusions -- References -- Index.
    Additional Edition: Print version: Murray, Keith Single Molecule Toroics Cham : Springer International Publishing AG,c2022 ISBN 9783031117084
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages