Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge, MA :Woodhead Publishing,
    UID:
    edoccha_9961139969902883
    Umfang: 1 online resource (526 pages)
    ISBN: 0-12-818237-7
    Serie: Woodhead Publishing Series in Energy Series
    Inhalt: Power Generation Technologies for Low-Temperature and Distributed Heat presents a systematic and detailed analysis of a wide range of power generation systems for low-temperature (lower than 700-800°C) and distributed heat recovery applications. Each technology presented is reviewed by a well-known specialist to provide the reader with an accurate, insightful and up-to-date understanding of the latest research and knowledge in the field. Technologies are introduced before the fundamental concepts and theoretical technical and economic aspects are discussed, as well as the practical performance expectations. Cutting-edge technical progress, key applications, markets, as well as emerging and future trends are also provided, presenting a multifaceted and complete view of the most suitable technologies.
    Anmerkung: Front Cover -- Power Generation Technologies for Low-Temperature and Distributed Heat -- Copyright Page -- Contents -- List of contributors -- Preface -- Acknowledgements -- Introduction -- 1 Overview of low-temperature distributed heat and fundamentals -- 1.1 Introduction -- 1.2 Definition and features of low-temperature and distributed heat -- 1.3 Pathways for heat recovery -- 1.4 Potential of low-temperature distributed heat -- 1.4.1 Global waste heat potential -- 1.4.2 Waste heat potential by region -- 1.4.2.1 United States -- 1.4.2.2 Europe -- 1.4.2.3 China -- 1.4.3 Waste heat potential by sector -- 1.4.4 Low-temperature distributed renewable heat potential -- 1.5 Thermodynamic fundamentals of power cycles -- 1.5.1 Maximum work -- 1.5.1.1 Some observations -- 1.5.1.2 Practical considerations -- Work ratio -- Matching -- Higher work ratio cycles -- 1.5.1.3 Properties of volatile fluids -- 1.5.1.4 Improving the Rankine cycle by using working fluids other than water -- 1.5.1.5 Working fluid properties -- 1.6 Conclusion -- References -- 2 Rankine cycle and variants -- 2.1 Steam Rankine cycles -- Abstract -- 2.1.1 Introduction -- 2.1.2 Fundamentals -- 2.1.3 Theoretical and practical performance expectations -- 2.1.3.1 Superheating -- 2.1.3.2 Reheating -- 2.1.3.3 Regeneration -- 2.1.3.4 Increasing boiler pressure and temperature -- 2.1.3.5 Decreasing condenser pressure and temperature -- 2.1.4 Comparison of technical/economic potential against conventional and other alternatives -- 2.1.5 Most recent developments and cutting-edge technical progress -- 2.1.6 Suitability -- 2.1.6.1 Temperature and pressure ranges and corresponding efficiencies and power output -- 2.1.6.2 Operational characteristics -- 2.1.6.3 Cost -- 2.1.6.4 Safety -- 2.1.6.5 Part-load operation -- 2.1.7 Key applications -- 2.1.7.1 Power generation from traditional heat sources. , 2.1.7.2 Power generation from renewable and waste heat sources: biomass as a heat source -- 2.1.7.3 Power generation from renewable and waste heat sources: geothermal energy -- 2.1.7.4 Power generation from renewable and waste heat sources: solar energy -- 2.1.7.5 Power generation from renewable and waste heat sources: residual heat recovery -- 2.1.7.6 Combined heat and power -- 2.1.7.7 Other applications -- 2.1.8 Markets -- 2.1.9 Emerging and future trends -- 2.1.10 Cogeneration suitability -- 2.1.11 Conclusion -- References -- 2.2 Organic Rankine cycles -- 2.2.1 Introduction -- 2.2.2 Fundamentals -- 2.2.2.1 Working fluid selection -- 2.2.2.2 Expander -- 2.2.2.3 Pump -- 2.2.2.4 Heat exchangers -- 2.2.3 Theoretical and practical performance expectations -- 2.2.3.1 Specific area -- 2.2.3.2 Specific investment cost -- 2.2.3.3 Simple payback period -- 2.2.3.4 Net present value -- 2.2.3.5 Levelized cost of electricity -- 2.2.4 Comparison of technical/economic potential against conventional and other alternatives -- 2.2.5 Most recent developments and cutting-edge technical progress -- 2.2.6 Suitability, advantages, and disadvantages -- 2.2.7 Key applications and markets -- 2.2.7.1 Geothermal energy -- 2.2.7.2 Biomass as a heat source -- 2.2.7.3 Residual heat recovery -- 2.2.7.4 Solar energy -- 2.2.8 Emerging and future trends and research areas -- 2.2.9 Cogeneration suitability -- 2.2.10 Conclusion -- References -- 2.3 Kalina cycles -- 2.3.1 Introduction -- 2.3.2 Basic KCSs -- 2.3.3 KCSs with accessories -- 2.3.3.1 KCSs with a superheater -- 2.3.3.2 KCSs with a low-temperature regenerator -- 2.3.3.3 KCSs with a high-temperature regenerator -- 2.3.3.4 KCSs with a dephlegmator and heat rejection to surroundings -- 2.3.3.5 KCSs with a dephlegmator and internal heat recovery -- 2.3.3.6 KCSs without a dephlegmator. , 2.3.3.7 Full KCSs with HTR and a vapour generator in series -- 2.3.3.8 Full KCSs with HTR and a vapour generator in parallel -- 2.3.4 Performance comparison on accessories to KCSs -- 2.3.5 Performance comparison of HTR and HRVG arrangements -- 2.3.6 Other Kalina cycle systems -- 2.3.7 Kalina cogeneration systems -- 2.3.8 Experimental work on KCSs -- 2.3.9 Conclusions -- References -- 2.4 Two-phase expanders and their applications -- 2.4.1 Introduction and fundamentals -- 2.4.2 Positive displacement machines as two-phase expanders -- 2.4.2.1 Categories of positive displacement machines -- 2.4.2.2 Characteristics of two-phase expansion in positive displacement machines -- 2.4.3 Two-phase turbines -- 2.4.3.1 Biphase turbines -- 2.4.3.2 Axial flow turbines -- 2.4.3.3 Pelton-type turbine -- 2.4.3.4 Radial inflow reaction turbines -- 2.4.3.5 Radial outflow (reaction) turbines -- 2.4.3.6 Parallel screw expanders and turbines -- 2.4.4 Applications -- 2.4.4.1 Trilateral flash cycle -- 2.4.4.2 Pressure reduction valve replacement -- 2.4.4.2.1 Industrial steam processes -- 2.4.4.2.2 Refrigeration and air-conditioning systems -- 2.4.4.3 Compressor expanders -- 2.4.4.4 Improvements to flash steam systems -- 2.4.4.4.1 Single-flash systems -- 2.4.4.4.2 Double-flash systems -- 2.4.4.5 Closed cycle systems with water/steam mixtures -- 2.4.4.5.1 Wet steam cycle systems -- 2.4.4.5.2 Geothermal systems -- 2.4.4.6 Closed cycle systems with organic working fluids -- 2.4.4.6.1 Trilateral flash cycle and wet organic Rankine cycle systems -- 2.4.4.6.2 Binary systems for medium-enthalpy sources -- 2.4.6 Concluding remarks and outlook -- References -- 3 CO2 cycles -- 3.1 Introduction and background -- 3.2 Fundamentals -- 3.2.1 Thermodynamic cycle basics -- 3.2.2 Turbomachinery -- 3.2.3 Heat exchangers -- 3.3 Theoretical and practical performance -- 3.3.1 Numerical studies. , 3.3.2 Experimental research -- 3.4 Comparison against conventional and other alternatives -- 3.5 State-of-the-art, recent developments, and progress -- 3.6 Suitability and applications -- 3.6.1 Suitability and advantages -- 3.6.2 Potential application areas -- 3.7 Emerging and future trends -- 3.8 Concluding remarks and outlook -- References -- 4 Oscillatory flow power cycles -- 4.1 Stirling engines -- Abstract -- 4.1.1 Introduction and background -- 4.1.2 Fundamentals -- 4.1.3 Theoretical and practical performance -- 4.1.4 State-of-the-art, recent progress and developments, and emerging and future trends -- 4.1.5 Suitability, key applications, and markets -- 4.1.5.1 Comparison with conventional and other alternatives -- 4.1.6 Concluding remarks and outlook -- References -- 4.2 Thermoacoustic engines -- 4.2.1 Introduction and background -- 4.2.2 Fundamentals -- 4.2.3 Thermoacoustic heat engine components -- 4.2.3.1 Resonator -- 4.2.3.2 Heat exchangers -- 4.2.3.3 Stack -- 4.2.3.4 Regenerator -- 4.2.3.5 Working gas -- 4.2.4 Theoretical and practical performance expectations -- 4.2.4.1 Main governing equations -- 4.2.4.2 Power considerations -- 4.2.5 Technoeconomic comparison with conventional and other alternatives -- 4.2.6 State-of-the-art, recent progress, and developments -- 4.2.7 Suitability, key applications, and markets -- 4.2.8 Combined heat and power generation -- 4.2.9 Emerging and future trends -- 4.2.10 Concluding remarks and outlook -- References -- 4.3 Thermofluidic oscillators -- 4.3.1 Introduction and background -- 4.3.2 Fundamentals -- 4.3.2.1 Organic fluid cycles -- 4.3.2.2 Two-phase thermofluidic oscillators -- 4.3.2.3 Noninertive-feedback thermofluidic engine -- 4.3.3 Theoretical and practical performance -- 4.3.3.1 Linearized modelling developments -- 4.3.3.2 Nonlinear modelling developments. , 4.3.4 State-of-the-art, challenges, recent progress and developments, and emerging and future trends -- 4.3.4.1 Thermally induced thermodynamic losses -- 4.3.4.2 Case study: thermodynamic losses in the NIFTE -- 4.3.4.3 Thermodynamic losses in gas springs -- 4.3.4.4 New working fluids, designs, and configurations -- 4.3.5 Concluding remarks and outlook -- References -- 5 Solid-state devices -- 5.1 Thermoelectric generators -- Abstract -- 5.1.1 Introduction and background -- 5.1.2 Fundamentals -- 5.1.3 Theoretical and practical performance -- 5.1.3.1 Theoretical performance -- 5.1.3.2 Practical performance: a case study -- 5.1.3.3 Commercially available TEGs -- 5.1.4 Technoeconomic comparison with conventional and other alternatives -- 5.1.5 State-of-the-art, recent progress and developments, and emerging and future trends -- 5.1.6 Suitability, key applications, and markets -- 5.1.7 Concluding remarks and outlook -- References -- 5.2 Thermomagnetic generators -- Abstract -- 5.2.1 Introduction and background -- 5.2.2 Fundamentals -- 5.2.2.1 Thermomagnetic materials -- 5.2.2.2 Operation principle of mechanism-rotating-type thermomagnetic generators -- 5.2.2.3 Operation principle of magnetic-flux-changing-type thermomagnetic generators -- 5.2.2.4 Operation principle of mechanism-oscillating-type thermomagnetic generators -- 5.2.3 Theoretical and practical performance -- 5.2.4 Technoeconomic comparison with conventional and other alternatives -- 5.2.5 State-of-the-art, recent progress and developments, and emerging and future trends -- 5.2.5.1 Mechanism-rotating-type thermomagnetic generators -- 5.2.5.2 Magnetic-flux-changing-type thermomagnetic generators -- 5.2.5.3 Mechanism-oscillating-type thermomagnetic generators -- 5.2.6 Potential applications of thermomagnetic generators -- 5.2.7 Perspective and future trends of thermomagnetic generators. , 5.2.8 Concluding remarks and outlook.
    Weitere Ausg.: ISBN 9780128180228
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz