UID:
edoccha_9961527717902883
Format:
1 online resource (294 pages)
Edition:
1st ed.
ISBN:
0-323-95302-6
Note:
Front Cover -- Mechanoluminescence in Organic and Inorganic Compounds -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- 1 Luminescence: types and mechanism -- 1.1 Introduction -- 1.2 Characteristics and classification of luminescence -- 1.3 Mechanism of luminescence -- References -- 2 Advancements in instrumental setups for investigating mechanoluminescence -- 2.1 Introduction -- 2.1.1 Fractoluminescence -- 2.1.2 Triboluminescence -- 2.1.3 Elasticoluminescence -- 2.1.4 Plastico-mechanoluminescence -- 2.1.5 Piezoluminescence -- 2.1.6 Electrochemiluminescence -- 2.1.7 Sonoluminescence -- 2.2 Examples of mechanoluminescence materials and applications -- 2.3 Experimental techniques -- 2.3.1 Experimental setup of impulsive technique -- 2.4 Experimental setup of compression and tensile testing technique -- 2.5 Compression testing -- 2.6 Tensile testing -- 2.7 Experimental setup of bending and flexing technique -- 2.8 Bending technique -- 2.9 Flexing technique -- 2.10 Experimental setup of fracture or crack-induced technique -- 2.11 Experimental setup of tribological technique -- 2.12 Laboratory apparatus used to measure triboluminescence -- 2.13 Laboratory apparatus used to measure fractoluminescence -- 2.14 Laboratory apparatus used to measure the lastic-mechanoluminescence -- 2.15 Laboratory apparatus used to measure the plastico-mechanoluminescence -- 2.16 Mechanoluminescent materials -- 2.17 Conclusions -- Acknowledgments -- References -- 3 Synthesis of organic and inorganic mechanoluminescent compounds -- 3.1 Introduction -- 3.2 Synthesis methodologies -- 3.2.1 Solid-state reaction method -- 3.2.2 Sol-gel synthesis method -- 3.2.3 Microwave-assisted method -- 3.2.3.1 Quaternary oxysulfide -- 3.2.3.2 Niobates and stannates -- 3.2.4 Mechanoluminescent inorganic materials.
,
3.2.5 Mechanoluminescence of organic materials -- 3.3 Conclusions -- References -- 4 Impact of doping on mechanoluminescence -- 4.1 Introduction -- 4.2 Difference between triboluminescence and mechanoluminescence -- 4.3 Representation of ML phosphor -- 4.4 Dependence of mechanoluminescence on crystal structures -- 4.5 Mechanism of mechanoluminescence -- 4.6 Impact of doping on mechanoluminescence -- 4.6.1 Effect of doped ions on mechanoluminescence spectra -- 4.6.2 Effect of doping rare earth metal ions on mechanoluminescence -- 4.6.3 Different host materials and their mechanoluminescence properties on doping -- 4.6.3.1 Mechanoluminescence in halides -- 4.6.3.2 Mechanoluminescence in sulfides -- 4.6.3.3 Mechanoluminescence in oxysulfides -- 4.6.3.4 Mechanoluminescence in oxides -- 4.7 Conclusion -- References -- 5 Mechanoluminescence for display devices -- 5.1 Introduction -- 5.2 ML materials for display applications -- 5.2.1 Inorganic ML materials -- 5.2.2 Organic materials -- 5.2.3 Polymer composites -- 5.2.4 Biological materials -- 5.3 Origin of ML -- 5.4 Methodology -- 5.5 Outlook -- References -- 6 Mechanoluminescence for infrastructure, health, and safety applications -- 6.1 Introduction -- 6.2 Mechanism of mechanoluminescence -- 6.2.1 Elastico-mechanoluminescence based on the electrostatic interaction at dislocations -- 6.2.2 Elastico-mechanoluminescence based on electron detrapping caused by piezoelectricity -- 6.3 Mechanoluminescent materials -- 6.4 Mechanoluminescence for infrastructure, health, and protection -- 6.4.1 Mechanoluminescence applications in buildings and other structures -- 6.4.2 Mechanoluminescence for health -- 6.4.2.1 Biomimetic multifunctional E-skins integrated with mechanoluminescence -- 6.4.3 Mechanoluminescence for safety applications -- 6.5 Future prospects and conclusion -- References.
,
7 Mechanoluminescence in anticounterfeiting -- 7.1 Introduction -- 7.2 Mechanoluminescence: mechanisms and experimental methodology -- 7.2.1 Mechanism of mechanoluminescence -- 7.2.2 Experimental methodology -- 7.3 Factors affecting mechanoluminescence -- 7.4 Triboluminescence and its applications in anticounterfeiting technology -- 7.4.1 Comparison of triboluminescence and piezoluminescence in terms of their mechanoluminescence efficiency and sensitivity -- 7.4.1.1 Sensitivity -- 7.5 Materials for mechanoluminescence-based anticounterfeiting -- 7.5.1 Zinc sulfide -- 7.5.2 Zinc oxide -- 7.5.3 Strontium aluminate -- 7.5.3.1 Advantages -- 7.5.4 Barium aluminate -- 7.6 Advances in mechanoluminescence materials -- 7.6.1 Metal-organic frameworks -- 7.6.2 Organic materials -- 7.6.3 Inorganic materials -- 7.6.4 Hybrid materials -- 7.7 Applications of mechanoluminescence in anticounterfeiting -- 7.7.1 Currency authentication -- 7.7.2 Secure packaging -- 7.7.3 Product authentication -- 7.7.4 Document security -- 7.8 Challenges and future directions -- 7.9 Conclusion -- References -- 8 Mechanoluminescence for electronic skins and wearable devices -- 8.1 Introduction -- 8.2 Displays and sensors in electronic skins and wearable devices -- 8.2.1 Technical requirements in wearable devices -- 8.2.1.1 Flexibility and stretchability -- 8.2.1.2 Spatial resolution -- 8.2.1.3 Energy-saving or self-powering feature -- 8.2.1.4 Remoteness -- 8.2.1.5 Self-healing ability -- 8.2.1.6 Biocompatibility -- 8.2.2 Display technologies in wearable devices -- 8.2.2.1 OLEDs for flexible displays -- 8.2.2.2 QLEDs for flexible displays -- 8.2.2.3 Mini/micro-LEDs for wearable devices -- 8.2.3 Stress sensing technologies in wearable devices -- 8.2.3.1 Piezoresistive stress sensors -- 8.2.3.2 Capacitive stress sensors -- 8.2.3.3 Optical stress sensors.
,
8.2.3.4 Piezoelectric stress sensors -- 8.2.3.5 Triboelectric stress sensors -- 8.2.4 Overview of ML in electronic skins and wearable devices -- 8.3 ML for self-powered displays in wearable devices -- 8.3.1 Technical route -- 8.3.2 Key features -- 8.3.2.1 Emission spectra -- 8.3.2.2 Brightness -- 8.3.2.3 Durability -- 8.3.3 Recent progress -- 8.3.3.1 Developing ML materials for self-powered displays -- 8.3.3.2 Designing the structure of ML-based devices for self-powered displays -- 8.4 ML for stress sensing in wearable devices -- 8.4.1 Technical route -- 8.4.1.1 Structural configuration -- 8.4.1.2 Photodetector -- 8.4.1.3 Information acquisition of the sensor -- 8.4.1.4 Key features -- 8.4.1.5 Response time -- 8.4.1.6 Spatial resolution -- 8.4.1.7 Self-powering -- 8.4.1.8 Multimode sensing -- 8.4.2 Recent progress -- 8.4.2.1 ML-based sensors for electronic skins and wearable devices -- 8.4.2.2 Optical/electrical dual-channel sensors for electronic skins and wearable devices -- 8.5 Challenges and prospects -- 8.5.1 To enhance the functional features of ML materials and devices -- 8.5.2 To construct integrated intelligent systems -- 8.5.3 To improve the device architecture and manufacturing technology for large-scale production -- References -- 9 Mechanoluminescence for reconstructing 3D ultrasonic field -- 9.1 Introduction -- 9.2 Experiment -- 9.2.1 Basic concepts -- 9.2.2 Mechanoluminescent compounds -- 9.2.3 Methods -- 9.3 Back-projection tomography -- 9.4 Acoustically induced piezoluminescence visualization method -- 9.5 Solid-state reaction method -- 9.6 Literature review of specific applications of ML in 3D ultrasound imaging -- 9.7 Discussion -- 9.8 Conclusion -- References -- Further reading -- 10 Other emerging applications of mechanoluminescence and outlook -- 10.1 Introduction -- 10.2 History of ML applications.
,
10.3 Classical applications of ML -- 10.3.1 Understanding ML in crystals -- 10.3.2 ML in stress sensing -- 10.3.3 ML in damage sensing -- 10.4 Other emerging applications -- 10.4.1 Force-induced charge carrier storage -- 10.4.2 ML in medicals -- 10.4.3 Skin sensing and artificial intelligence -- 10.4.4 Cracked bones detection -- 10.4.5 ML in optogenetics and drug delivery system -- 10.4.6 Wearable electronics -- 10.4.7 Sensing other fields -- 10.4.8 Wind-driven mechanoluminescence -- 10.4.9 Radiation dosimetry -- 10.4.10 Military and aerospace applications -- 10.4.11 Light sources and displays -- 10.4.12 Other applications -- 10.5 Challenges -- 10.6 Summary -- References -- Index -- Back Cover.
Additional Edition:
ISBN 0-323-95301-8
Language:
English