Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    UID:
    edoccha_9961574118202883
    Format: 1 online resource (540 pages)
    Edition: 4th ed.
    ISBN: 9783031548536
    Note: Intro -- Preface to the Fourth Edition -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- 1 Einstein's Theory of Atom-Radiation Interaction -- 1.1 The A and B Coefficients -- 1.2 Thermal Equilibrium -- 1.3 Photon Distribution and Fluctuations -- 1.4 Light Beam Incident on Atoms -- 1.5 An Elementary Laser Theory -- 1.5.1 Threshold and Population Inversion -- 1.5.2 Steady State -- 1.5.3 Linear Stability Analysis -- References -- 2 Atom-Field Interaction: Semiclassical Approach -- 2.1 Broad-Band Radiation Spectrum -- 2.2 Rabi Oscillations -- 2.3 Bloch's Equations -- 2.4 Decay to an Unobserved Level -- 2.5 Decay Between Levels -- 2.6 Optical Nutation -- References -- 3 Quantization of the Electromagnetic Field -- 3.1 Fock States -- 3.2 Density of Modes -- 3.3 Commutation Relations -- Reference -- 4 States of the Electromagnetic Field I -- 4.1 Further Properties -- 4.1.1 Coherent States Are Minimum Uncertainty States -- 4.1.2 Coherent States Are Not Orthogonal -- 4.1.3 Coherent States Are Overcomplete -- 4.1.4 The Displacement Operator -- 4.1.5 Photon Statistics -- 4.1.6 Coordinate Representation -- 4.2 Mixed State: Thermal Radiation -- References -- 5 States of the Electromagnetic Field II -- 5.1 Squeezed States: General Properties and Detection -- 5.1.1 The Squeeze Operator and the Squeezed State -- 5.1.2 The Squeezed State Is an Eigenstate of A -- 5.1.3 Calculation of Moments with Squeezed States -- 5.1.4 Quadrature Fluctuations -- 5.1.5 Photon Statistics -- 5.2 Multimode Squeezed States -- 5.3 Detection of Squeezed States -- 5.3.1 Ordinary Homodyne Detection -- 5.3.2 Balanced Homodyne Detection -- 5.3.3 Heterodyne Detection -- References -- 6 Quantum Theory of Coherence -- 6.1 One-Atom Detector -- 6.2 The nn-Atom Detector -- 6.3 General Properties of the Correlation Functions. , 6.4 Young's Interference and First-Order Correlation -- 6.5 Second-Order Correlations: Photon Bunching and Antibunching -- 6.5.1 Classical Second-Order Coherence -- 6.5.2 Quantum Theory of Second-Order Coherence -- 6.5.3 The Handbury Brown-Twiss Effect for Fock States, Thermal and diffused Laser Lightch6scully -- 6.6 Photon Counting -- 6.6.1 Some Simple Examples -- 6.6.2 Quantum Mechanical Photon Count Distribution -- 6.6.3 Particular Examples -- References -- 7 Phase Space Description -- 7.1 upper QQ-Representation: Antinormal Ordering -- 7.1.1 Normalization -- 7.1.2 Average of Antinormally Ordered Products -- 7.1.3 Some Examples -- 7.1.4 The Density Operator in Terms of the Function upper QQ -- 7.2 Characteristic Function -- 7.3 upper PP Representation: Normal Ordering -- 7.3.1 Normalization -- 7.3.2 Averages of Normally Ordered Products -- 7.3.3 Some Interesting Properties -- 7.3.4 Some Examples -- 7.4 The Wigner Distribution: Symmetric Ordering -- 7.4.1 ps: [/EMC pdfmark [/StPop pdfmark =0ps: [/Subtype /P /StPNE pdfmark [/StBMC pdfmark Marginals -- 7.4.2 Product Rule -- 7.4.3 Moments -- References -- 8 Atom-Field Interaction -- 8.1 Atom-Field Hamiltonian and the Dipole Approximation -- 8.2 A Two-Level Atom Interacting with a Single Field Mode -- 8.3 The Dressed State Picture: Quantum Rabi Oscillations -- 8.4 Collapse and Revivals -- References -- 9 System-Reservoir Interactions -- 9.1 Quantum Theory of Damping -- 9.2 General Properties -- 9.3 Expectation Values of Relevant Physical Quantities -- 9.4 Time Evolution of the Density Matrix Elements -- 9.5 The Glauber-Sudarshan Representation, and the Fokker-Planck Equation -- 9.6 Time-Dependent Solution: The Method of the Eigenfunctions -- 9.6.1 General Solution -- 9.7 Langevin's Equations. , 9.7.1 Calculation of the Correlation Function left angle bracket upper F left parenthesis t prime right parenthesis upper F left parenthesis t double prime right parenthesis Superscript dagger Baseline right angle bracket Subscript upper BlangleF(t)F(t)rangleB -- 9.7.2 Differential Equation for the Photon Number -- 9.8 Other Master Equations -- 9.8.1 Two-Level Atom in a Thermal Bath -- 9.8.2 Damped Harmonic Oscillator in a Squeezed Bath -- 9.8.3 Application: Spontaneous Decay in a Squeezed Vaccum -- References -- 10 Resonance Fluorescence -- 10.1 Background -- 10.2 Heisenberg's Equations -- 10.3 Spectral Density, and the Wiener-Khinchine Theorem -- 10.4 Emission Spectra from Strongly Driven Two-Level Atoms -- 10.5 Intensity Correlations -- References -- 11 Quantum Laser Theory: Master Equation Approach -- 11.1 Heuristic Discussion of Injection Statistics -- 11.2 Master Equation for Generalized Pump Satistics -- 11.3 The Quantum Theory of the Laser: Random Injection left parenthesis p equals 0 right parenthesis(p=0) -- 11.3.1 Photon Statistics -- 11.3.2 The Fokker-Planck Equation: Laser Linewidth -- 11.3.3 Alternative Derivation of the Laser Linewidth -- 11.4 Quantum Theory of the Micromaser: Random Injection left parenthesis p equals 0 right parenthesis(p=0) -- 11.4.1 Generalities -- 11.4.2 The Micromaser -- 11.4.3 Trapping States -- 11.5 Quantum Theory of the Laser and the Micromaser … -- References -- 12 Quantum Laser Theory: Langevin Approach -- 12.1 Quantum Langevin Equations -- 12.1.1 The Generalized Einstein's Relations -- 12.1.2 The Atomic Noise Moments -- 12.2 upper CC-Number Langevin Equations -- 12.2.1 Adiabatic Approximation -- 12.3 Phase and Intensity Fluctuations -- 12.4 Discussion -- References -- 13 Quantum Noise Reduction 1 -- 13.1 Correlated Emission Laser Systems -- 13.1.1 The Quantum Beat Laser -- 13.1.2 Other CEL Systems. , References -- 14 Quantum Noise Reduction 2 -- 14.1 Introduction to Non-Linear Optics -- 14.1.1 Multiple-Photon Transitions -- 14.2 Parametric Processes Without Losses -- 14.3 The Input-Output Theory -- 14.4 The Degenerate Parametric Oscillator -- 14.5 Experimental Results -- References -- 15 Quantum Phase -- 15.1 The Dirac Phase -- 15.2 The Louisell Phase -- 15.3 The Susskind-Glogower Phase -- 15.4 The Pegg-Barnett Phase -- 15.4.1 Applications -- 15.5 Phase Fluctuations in a Laser -- References -- 16 Quantum Trajectories -- 16.1 Montecarlo Wavefunction Method -- 16.1.1 The Montecarlo Method is Equivalent, on the Average, to the Master Equation -- 16.2 The Stochastic Schrödinger Equation -- 16.3 Stochastic Schrödinger Equations and Dissipative Systems -- 16.4 Simulation of a Monte Carlo SSE -- 16.5 Simulation of the Homodyne SSDE -- 16.6 Numerical Results and Localization -- 16.6.1 Quantum Jumps Evolution -- 16.6.2 Diffusion-Like Evolution -- 16.6.3 Analytical Proof of Localization -- 16.7 Conclusions -- References -- 17 Atom Optics -- 17.1 Optical Elements -- 17.2 Light Forces -- 17.2.1 Doppler Cooling -- 17.3 Atomic Diffraction from an Optical Standing Wave -- 17.3.1 Theory -- 17.3.2 Particular Cases -- 17.4 Atomic Focusing -- 17.4.1 The Model -- 17.4.2 Initial Conditions and Solution -- 17.4.3 Quantum and Classical Foci -- 17.4.4 Thin Versus Thick Lenses -- 17.4.5 The Quantum Focal Curve -- 17.4.6 Aberrations -- References -- 18 Measurements, Quantum Limits and All That -- 18.1 Quantum Standard Limit -- 18.1.1 Quantum Standard Limit for a Free Particle -- 18.1.2 Standard Quantum Limit for an Oscillator -- 18.1.3 Thermal Effects -- 18.2 Quantum Non-demolition (QND) Measurements -- 18.2.1 The Free System -- 18.2.2 Monitoring a Classical Force -- 18.2.3 Effect of the Measuring Apparatus or Probe. , 18.3 QND Measurement of the Number of Photons in a Cavity -- 18.3.1 The Model -- 18.3.2 The System-Probe Interaction -- 18.3.3 Measuring the Atomic Phase with Ramsey Fields -- 18.3.4 QND Measurement of the Photon Number -- 18.4 Quantum Theory of Continuous Photodetection Process -- 18.4.1 Introduction -- 18.4.2 Continuous Measurement in a Two-Mode System: Phase Narrowing -- 18.5 Generalized Measurements. POVM's -- 18.5.1 Standard Quantum Measurements -- 18.5.2 Positive Operator Valued Measures. POVM -- References -- 19 Weak Measurements -- 19.1 Weak Value Amplification -- 19.2 Weak Measurement Model -- 19.3 Post Selection and the Aharonov-Bergmann-Lebowitz (ABL) Rule ch19ah1 -- 19.4 Jozsa's Theorem -- 19.5 Examples -- 19.5.1 Example 1-ch19Tamir -- 19.5.2 Example 2 -- 19.6 Experiment on the Weak-to-Strong Transition -- 19.7 The Leggett Garg Inequality -- 19.8 The Quantum Box Problem ch19sergio -- 19.9 Discussion -- References -- 20 Trapped Ions -- 20.1 Paul Trap ch20ch19:CohenT -- 20.1.1 General Properties -- 20.1.2 Stability Analysis -- 20.2 Trapped Ions -- 20.2.1 Introduction -- 20.2.2 The Model and Effective Hamiltonian -- 20.2.3 The Lamb-Dicke Expansion and Raman Cooling -- 20.2.4 The Dynamical Evolution -- 20.2.5 QND Measurements of Vibrational States -- 20.2.6 Generation of Non-classical Vibrational States -- References -- 21 Decoherence -- 21.1 Dynamics of the Correlations -- 21.2 How Long Does It Take to Decohere? -- 21.3 Decoherence Free Subspaces -- 21.3.1 Simple Example: Collective Dephasing ch21palma -- 21.3.2 General Treatment ch21lidar1 -- 21.3.3 Condition for DFS: Hamiltonian Approach -- 21.3.4 Condition for DFS: Lindblad Approach -- 21.3.5 Example: upper NN Spins in Boson Bath ch21lidar1 -- 21.4 Quantum Maps -- 21.4.1 Examples ch21Preskill -- References -- 22 Quantum Bits, Entanglement and Applications -- 22.1 Qubits and Quantum Gates. , 22.2 Entanglement.
    Additional Edition: ISBN 9783031548529
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages