Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    edoccha_9961574151602883
    Umfang: 1 online resource (221 pages)
    Ausgabe: 1st ed.
    ISBN: 9783031601170
    Serie: Sustainable Landscape Planning and Natural Resources Management Series
    Anmerkung: Intro -- Contents -- Biologically Active Compounds from Medicinal and Aromatic Plants for Industrial Applications -- Abstract -- 1 Introduction -- 1.1 Medicinal Aromatic Plants and Their Classification Hey -- 1.2 Biological Active Compounds -- 1.2.1 Alkaloids -- 1.2.2 Terpenoids (Terpenes) -- 1.2.3 Phenolics -- 1.3 Industrial Importance of Biological Active Compounds -- 2 Industrial Use of MAPs and Bioactive Compounds from Plants -- 2.1 Essential Oils -- 2.1.1 Lemongrass (Cymbopogon Citratus) -- 2.1.2 Palmarosa (Cymbopogon Martinii) -- 2.1.3 Vetiver -- 2.1.4 Mints -- 2.1.5 Basil -- 2.1.6 Patchouli -- 2.1.7 Rosemary -- 2.1.8 Clary Sage -- 2.1.9 Thyme -- 2.1.10 Celery -- 2.1.11 Lavender -- 2.1.12 Citrus -- 2.2 MAPs in Dye Industry -- 2.3 Use of MAPs in Perfumery Sector -- 2.4 Use of MAPs in Cosmetics -- 2.5 Use of MAPs in Plastic Production -- 2.6 Other Industrial Applications -- 2.6.1 MAPs in Energy Production -- 2.6.2 MAPs in Agricultural Applications -- 3 Conclusion -- References -- In-vitro Propagation to Conserve Medicinally Important Plants: Insight, Procedures, and Opportunities -- Abstract -- 1 Introduction -- 2 Importance of Medicinal Plants -- 3 Factors Related to the Rarity and Reasons to Conserve Medicinal Plants -- 4 Conservation Strategies for Medicinal Plants -- 5 In vitro Propagation as a Means of Conserving Medicinal Plants -- 6 Basic Procedure for in vitro Propagation of Plants -- 7 Different Techniques of in vitro Propagation -- 7.1 Organ Culture -- 7.1.1 Meristem Culture -- 7.1.2 Shoot Culture -- 7.1.3 Primordial Leaf Culture -- 7.1.4 Flower Culture -- 7.1.5 Nucellus Culture -- 7.1.6 Seed Culture -- 7.2 Unorganized Cell Culture -- 7.2.1 Callus Culture -- 7.2.2 Protoplast Culture -- 7.2.3 Cell Suspension Culture -- 8 Applications of in vitro Propagation of Medicinal Plants. , 8.1 In vitro Propagation of Medicinal Plants for Producing Phytopharmaceutical Drugs -- 8.2 In vitro Propagation for Producing Disease-Free Medicinal Plants -- 8.3 In vitro Propagation of Medicinal Plants for the Enhanced Production of Secondary Metabolites -- 9 Challenges in in vitro Propagation and Possibilities to Improve -- 10 Conclusion -- References -- Harnessing In-Vitro Propagation for the Sustainable Conservation of Medicinal Plants: Challenges and Prospects -- Abstract -- 1 Introduction -- 2 In-vitro Propagation Offers Several Advantages for the Conservation of Medicinal Plants -- 2.1 Rapid Multiplication -- 2.2 Genetic Uniformity -- 2.3 Disease-Free Stock: In-Vitro Methods Can Produce Disease-Free Plants, Crucial for Maintaining the Health and Viability of Medicinal Plant Populations -- 2.4 Conservation of Endangered Species: This Technology is Particularly Valuable for Propagating and Conserving Endangered Medicinal Plant Species -- 3 Challenges in In-vitro Propagation of Medicinal Plants -- 3.1 Genetic Stability: Long-Term Tissue Culture Can Lead to Somaclonal Variation, Resulting in Genetic and Phenotypic Changes in the Propagated Plants -- 3.2 Cost and Resource Intensive: The Requirement for Specialized Equipment and Sterile Conditions Makes In-Vitro Propagation Expensive and Resource-Intensive -- 3.3 Technical Expertise: Successful In-vitro Propagation Requires Skilled Personnel and Extensive Knowledge of Plant Physiology and Biochemistry -- 3.4 Scaling up: Transferring Laboratory-Grown Plants to Field Conditions (Acclimatization) is Often Challenging and Has a High Mortality Rate -- 4 Recent Advances and Innovations -- 4.1 Automated Culture Systems: Automated Systems Have Been Developed for Large-Scale Propagation, Reducing Labor Costs and Improving Efficiency. , 4.2 Synthetic Seed Technology: This Involves Encapsulating Somatic Embryos in a Protective Coating, Allowing Easy Handling and Storage -- 4.3 Molecular Tools: Advances in Molecular Biology Help in Understanding and Controlling Somaclonal Variation and in Ensuring Genetic Fidelity -- 5 Prospects for Sustainable Conservation -- 5.1 Integration with Conventional Conservation Methods: Combining In-Vitro Techniques with Traditional Conservation Methods Can Offer a Holistic Approach to Preserving Medicinal Plant Species -- 5.2 Community-Based In-Vitro Propagation Programs: Engaging Local Communities in Propagation Efforts Can Ensure Sustainable Harvesting and Conservation Practices. -- 5.3 Global Networks and Gene Banks: Establishing Global Networks and Gene Banks for Medicinal Plants Can Facilitate the Sharing of Resources and Knowledge -- 6 Conclusion -- References -- Response of Cultivated Industrial Crops to Abiotic Stress: Strategies to Enhance Target Metabolite Productivity -- Abstract -- 1 Introduction -- 2 Strategies for Enhanced Metabolite Productivity Under Abiotic Stress -- 2.1 Genetic Engineering -- 2.2 Selection and Breeding -- 2.3 Biotechnological Approaches -- 2.4 Phytohormone Application -- 2.5 Environmental Control -- 2.6 Nutrient Management -- 2.7 Elicitors and Enhancers -- 3 Medicinal and Aromatic Plants Under Drought or Water Stress -- 3.1 Secondary Metabolite Production -- 3.2 Stress Signaling Pathways -- 4 Medicinal and Aromatic Plants Under Salinity Stress -- 4.1 Osmotic Stress and Secondary Metabolite Production -- 4.2 Antioxidant Defense Mechanisms -- 4.3 Variations in Metabolite Profiles -- 4.4 Modulation of Terpenoid Pathways -- 4.5 Genetic and Physiological Variation -- 4.6 Timing and Duration of Stress -- 4.7 Nutrient Imbalances -- 4.8 Commercial Implications. , 5 Medicinal and Aromatic Plants Under Temperature (Higher and Lower) Stress -- 5.1 Temperature Optima -- 5.2 Temperature Stress -- 5.3 Impact on Essential Oil Composition -- 5.4 Temperature-Dependent Enzyme Activity -- 5.5 Geographic and Altitudinal Effects -- 5.6 Cultivation Practices -- 6 Medicinal and Aromatic Plants in Presence of Heavy and Toxic Metals in Soil -- 6.1 Stress-Induced Responses -- 6.2 Variation in Metabolite Profiles -- 6.3 Metal-Specific Responses -- 6.4 Bioaccumulation of Heavy Metals -- 6.5 Phytoremediation Potential -- 7 Effect of Soil pH on Secondary Metabolite Production in Medicinal and Aromatic Plants -- 7.1 Nutrient Availability -- 7.2 Enzyme Activity -- 7.3 Altered Chemical Forms of Compounds -- 7.4 Effect of Soil pH on Alkaloids and Flavonoids -- 7.5 Effect of Soil pH on Essential Oils -- 8 Conclusion -- References -- Clove: Tiny Buds with Global Fame -- Abstract -- 1 Introduction -- 2 Ethnobotanical Uses -- 3 Applications in Islamic Traditional Medicine -- 4 Bioactive Constituents -- 5 Pharmacological Effects of Clove -- 5.1 Anti-oxidant Effect -- 5.2 Anti-inflammatory Effect -- 5.3 Neuroprotective Effect -- 5.3.1 Alzheimer's Disease -- 5.3.2 Parkinson's Disease -- 5.4 Effect Against Metabolic Syndrome -- 5.5 Anti-cancer Effect -- 5.6 Anti-microbial Effect -- 6 Conclusion and Future Aspects -- References -- Konkan's Curcuma: Insights Into Morphological and Genetic Diversity, Phytochemical Treasures, and In-Vitro Micropropagation -- Abstract -- 1 Introduction -- 2 Geographical Distribution -- 3 Morphological Marvels -- 4 Genetic Diversity Analysis Through Molecular Markers -- 5 Phytochemicals in Curcuma sp. -- 5.1 Phytochemical Analysis -- 6 Micropropagation Studies for Curcuma sp. -- 7 Uses of Curcuma sp. -- 7.1 Medicinal Uses -- 7.2 Ornamental Uses -- 7.3 Other Uses -- 8 Conclusion and Prospects -- References. , Recent Advances in Extraction, Analysis, Value Addition, and Applications of Essential Oils -- Abstract -- 1 Introduction -- 2 Definition of Essential Oil -- 3 Botanical Aspects -- 4 Physical and Chemical Nature -- 5 Extraction Techniques -- 5.1 Conventional Extraction Techniques -- 5.1.1 Hydro-Distillation (HD) -- 5.1.2 Hydro-Steam-Distillation (HSD) -- 5.1.3 Steam-Distillation (SD) -- 5.1.4 Hydro-Diffusion -- 5.1.5 Cold Expression -- 5.1.6 Solvent Extraction -- 5.1.7 Enfleurage -- 5.2 Modern Extraction Techniques -- 5.2.1 Supercritical Fluid Extraction (SFE) -- 5.2.2 Subcritical Water Extraction -- 5.2.3 Microwave-Assisted Extraction -- 5.2.4 Ultrasound-Assisted Extraction -- 5.3 Micro-Extraction (Sampling) Techniques -- 5.3.1 Micro-Distillation -- 5.3.2 Headspace Techniques -- 5.3.3 Solid-Phase Micro-Extraction (SPME) -- 6 Essential Oil Analysis -- 6.1 Physical Properties -- 6.1.1 Specific Gravity -- 6.1.2 Refractive Index -- 6.1.3 Optical Rotation -- 6.1.4 Miscibility in Aqueous Ethanol -- 6.2 Separation Techniques -- 6.2.1 Thin-Layer Chromatography (TLC) -- 6.2.2 Gas Chromatography -- 6.2.3 Chiral Gas Chromatography -- 6.2.4 Two-Dimensional Gas Chromatography (GC × GC) -- 6.2.5 Gas Chromatography-Olfactometry -- 6.3 Isolation Techniques -- 6.3.1 Chemical Method -- 6.3.2 Column Chromatography -- 6.3.3 Preparative Thin Layer Chromatography -- 6.3.4 Preparative Gas Chromatography -- 6.3.5 Fractional Distillation -- 6.4 Characterisation Techniques -- 6.4.1 Gas Chromatography-Mass Spectrometry (GC-MS) -- 6.4.2 Spectroscopic Techniques -- 6.4.3 Emerging Techniques -- 7 Value Addition -- 7.1 Primary and Secondary-Processing -- 7.2 Value Addition Routes of Residual Biomass -- 8 Application -- 9 Conclusions and Future Prospects -- References -- Green Techniques for the Extraction of Bioactives from Withania Somnifera for Agro-Industrial Potential. , Abstract.
    Weitere Ausg.: ISBN 9783031601163
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz