UID:
edocfu_9961089662502883
Format:
1 online resource (584 pages)
Edition:
Third edition.
ISBN:
0-12-813040-7
,
0-12-812992-1
Note:
Cover -- Title page -- Copyright page -- Dedication -- Contents -- Preface -- Acknowledgments -- Chapter 1 - Introduction -- 1.1 - Biomass and Its Products -- 1.1.1 - Products of Biomass -- 1.1.1.1 - Chemical Industries -- 1.1.1.2 - Energy Industries -- 1.1.1.3 - Transport Industries -- 1.1.1.4 - Environmental Industries -- 1.2 - Biomass Conversion -- 1.2.1 - Biochemical Conversion -- 1.2.2 - Thermochemical Conversion -- 1.2.2.1 - Combustion -- 1.2.2.2 - Carbonization -- 1.2.2.3 - Pyrolysis -- 1.2.2.4 - Gasification -- 1.2.2.5 - Liquefaction -- 1.3 - Motivation for Biomass Conversion -- 1.3.1 - Renewability Benefits -- 1.3.2 - Environmental Benefits -- 1.3.2.1 - Carbon-Neutral Feature of Biomass -- 1.3.2.2 - Sulfur Removal -- 1.3.2.3 - Nitrogen Removal -- 1.3.2.4 - Dust and Hazardous Gases -- 1.3.3 - Sociopolitical Benefits -- 1.3.4 - Carbon Sequestration Potential -- 1.4 - Historical Background -- 1.5 - Commercial Attraction of Gasification -- 1.5.1 - Comparison of Gasification and Combustion -- 1.6 - Summary of Some Chemical Reactions -- 1.6.1 - Biomass Conversion -- 1.6.1.1 - Torrefaction -- 1.6.1.2 - Pyrolysis -- 1.6.1.3 - Combustion of Carbon -- 1.6.1.4 - Gasification of Biomass and Carbon -- 1.6.2 - Chemical Reactions in Some Synthesis Processes -- 1.6.2.1 - Syngas Production -- 1.6.2.2 - Methanol Synthesis -- 1.6.2.3 - Ammonia Synthesis -- 1.6.2.4 - Fischer-Tropsch Reaction -- 1.6.2.5 - Methanation Reaction -- Symbols and Nomenclature -- Chapter 2 - Economic Issues of Biomass Energy Conversion -- 2.1 - Introduction -- 2.1.1 - Renewable Energy Outlook -- 2.2 - Biomass Availability and Products -- 2.2.1 - Availability Assessment -- 2.2.1.1 - Energy Crop -- 2.2.1.2 - Biomass Cost -- 2.2.2 - Product Revenue From Biomass Conversion -- 2.2.2.1 - Energy Revenue -- 2.2.2.2 - Revenue From Chemicals.
,
2.2.2.3 - Revenue From Secondary Fuel Production -- 2.2.3 - Biomass Conversion Process Plant Equipment and Cost -- 2.2.4 - Biomass Collection System -- 2.2.5 - Preprocessing -- 2.2.6 - Gasifier Cost -- 2.2.7 - Torrefier Cost -- 2.2.8 - Pyrolyzer Cost -- 2.2.9 - Comparison of Capital Costs -- 2.3 - Financial Analysis -- 2.3.1 - Capital Cost Adjustment for Size and Time -- 2.3.1.1 - Scale-Up With Size -- 2.3.1.2 - Scale-Up With Time -- 2.3.2 - Capital Requirement -- 2.3.3 - Operation and Maintenance Cost -- 2.3.3.1 - Carrying Charge -- 2.3.3.2 - Revenue Requirement -- Symbols and Nomenclature -- Chapter 3 - Biomass Characteristics -- 3.1 - Introduction -- 3.2 - What is Biomass? -- 3.2.1 - Biomass Formation -- 3.2.1.1 - Photosynthesis Reaction -- 3.2.1.2 - Cellular Respiration -- 3.2.2 - Carbon cycle -- 3.2.2.1 - Carbon Accounting -- 3.2.2.2 - Carbon Sequestration -- 3.2.3 - Types of Biomass -- 3.2.3.1 - Lignocellulosic Biomass -- 3.2.3.2 - Crops and Vegetables -- 3.2.3.3 - Waste Biomass -- 3.3 - Structure of Biomass -- 3.3.1 - Structure of Wood -- 3.3.2 - Constituents of Biomass Cells -- 3.3.2.1 - Cellulose -- 3.3.2.2 - Hemicellulose -- 3.3.2.3 - Lignin -- 3.4 - General Classification of Fuels -- 3.4.1 - Atomic Ratio -- 3.4.2 - Relative Proportions of Lignocellulosic Components -- 3.4.3 - Ternary Diagram -- 3.5 - Properties of Biomass -- 3.5.1 - Physical Properties -- 3.5.1.1 - Densities -- 3.5.1.1.1 - True Density -- 3.5.1.1.2 - Apparent Density -- 3.5.1.1.3 - Bulk Density -- 3.5.1.1.4 - Biomass (Growth) Density -- 3.5.2 - Thermodynamic Properties -- 3.5.2.1 - Thermal Conductivity -- 3.5.2.2 - Specific Heat -- 3.5.2.3 - Heat of Formation -- 3.5.2.4 - Heat of Combustion (Reaction) -- 3.5.2.5 - Heating Value -- 3.5.2.6 - Ignition Temperature -- 3.6 - Composition of Biomass -- 3.6.1 - Ultimate Analysis -- 3.6.2 - Proximate Analysis.
,
3.6.2.1 - Volatile Matter -- 3.6.2.2 - Ash -- 3.6.2.3 - Moisture -- 3.6.2.3.1 - Basis of Expressing Moisture -- 3.6.2.3.2 - Fixed Carbon -- 3.6.2.3.3 - Char -- 3.6.3 - Thermogravimetric Analysis -- 3.6.4 - Bases of Expressing Biomass Composition -- 3.6.4.1 - As-Received Basis -- 3.6.4.2 - Air-Dry Basis -- 3.6.4.3 - Total Dry Basis -- 3.6.4.4 - Dry Ash-Free Basis -- 3.6.5 - Heating Value of Fuel -- 3.6.5.1 - Higher Heating Value -- 3.6.5.2 - Lower Heating Value -- 3.6.5.3 - Bases for Expressing Heating Values -- 3.6.5.4 - Estimation of Biomass Heating Values -- 3.6.6 - Stoichiometric Calculations for Complete Combustion -- 3.6.6.1 - Amount of Product Gas of Complete Combustion -- 3.6.6.2 - Composition of the Product of Combustion -- 3.6.7 - Composition of the Product Gas of Gasification -- Symbols and Nomenclature -- Subscripts -- Chapter 4 - Torrefaction -- 4.1 - Introduction -- 4.2 - What is Torrefaction? -- 4.2.1 - Temperature -- 4.2.2 - Heating rate -- 4.2.3 - Ambience -- 4.2.4 - Pyrolysis, Carbonization, and Torrefaction -- 4.2.4.1 - Difference Between Carbonization, Pyrolysis, and Torrefaction -- 4.2.4.1.1 - Product Motivation -- 4.2.4.1.2 - Heating Rate -- 4.2.4.1.3 - Oxygen Concentration -- 4.2.4.1.4 - Process Temperature -- 4.3 - Carbonization -- 4.3.1 - Charcoal Fuel -- 4.3.2 - Activated Charcoal -- 4.3.3 - Biocoke -- 4.3.4 - Biochar -- 4.3.4.1 - Pore Surface Area -- 4.3.5 - Hydrochar -- 4.4 - Torrefaction Process -- 4.4.1 - Heating Stages of Dry Torrefaction -- 4.4.1.1 - Predrying -- 4.4.1.2 - Drying -- 4.4.1.3 - Postdrying Heating -- 4.4.1.4 - Torrefaction -- 4.4.1.5 - Cooling -- 4.4.2 - Mechanism of Torrefaction -- 4.4.3 - Effect of Design Parameters on Torrefaction -- 4.4.3.1 - Temperature -- 4.4.3.1.1 - Core Temperature Rise -- 4.4.3.2 - Heating Rate & Residence Time -- 4.4.3.3 - Biomass Type -- 4.4.3.4 - Feed Size.
,
4.4.4 - Predictive Model of Torrefaction -- 4.5 - Quality of Torrefaction -- 4.5.1 - Mass Yield -- 4.5.2 - Energy Density -- 4.5.3 - Energy Yield -- 4.6 - Physical Properties of Torrefied Biomass -- 4.6.1 - Density and Volume -- 4.6.2 - Grindability -- 4.6.2.1 Effect of Torrefaction Parameters on Grinding -- 4.6.3 - Hydrophobicity of Torrefied Biomass -- 4.6.3.1 - Why Biomass Becomes Hydrophobic After Torrefaction? -- 4.6.4 - Explosion Potential of Torrefied Dust -- 4.6.5 - Densification or Pelletization -- 4.6.5.1 - Untreated Biomass -- 4.6.5.2 - Torrefied Biomass -- 4.7 - Torrefaction Technologies -- 4.7.1 - Classification of Torrefaction Reactors -- 4.7.1.1 - Classification on Mode of Heating -- 4.7.1.1.1 - Directly Heated Reactors -- 4.7.1.1.2 - Convective Reactor (Moving/Fixed/Entrained Bed) -- 4.7.1.1.3 - Fluidized Bed -- 4.7.1.1.4 - Hydrothermal Reactor -- 4.7.1.1.5 - Indirectly Heated Reactors -- 4.7.1.1.6 - Rotating Drum -- 4.7.1.1.7 - Screw or Stationary Shaft -- 4.7.1.1.8 - Microwave -- 4.7.1.2 - Classification on Mode of Gas-Solid Mixing -- 4.8 - Design Methods -- 4.8.1 - Design of Torrefaction Plant -- 4.8.1.1 - Choice of Reactor Type -- 4.8.1.2 - Design Approach -- 4.8.1.2.1 - Design Input -- 4.8.1.2.2 - Mass and Energy Balance -- 4.8.1.2.3 - Dryer -- 4.8.1.2.4 - Torrefier -- 4.8.1.2.5 - Cooler -- 4.8.1.2.6 - Burner -- 4.8.1.2.7 - Unit Sizing -- 4.8.1.2.8 - Predrying Section -- 4.8.1.2.9 - Drying and Postdrying Sections -- 4.8.1.2.10 - Torrefier Section -- Appendix: Mass and Energy Balance of Torrefier -- Symbols and Nomenclature -- Subscripts -- Greek Symbols -- Chapter 5 - Pyrolysis -- 5.1 - Introduction -- 5.1.1 - Historical Background -- 5.2 - Pyrolysis -- 5.2.1 - Pyrolysis Products -- 5.2.1.1 - Liquid -- 5.2.1.2 - Solid -- 5.2.1.3 - Gas -- 5.2.2 - Types of Pyrolysis -- 5.2.2.1 - Slow Pyrolysis -- 5.2.2.2 - Conventional Pyrolysis.
,
5.2.2.3 - Fast Pyrolysis -- 5.2.2.4 - Flash Pyrolysis -- 5.2.2.5 - Ultrarapid Pyrolysis -- 5.2.2.6 - Pyrolysis in the Presence of a Medium -- 5.3 - Pyrolysis Product Yield -- 5.3.1 - Effect of Biomass Composition -- 5.3.2 - Effect of Pyrolysis Temperature -- 5.3.3 - Effect of Heating Rate -- 5.3.4 - Effect of Particle Size -- 5.3.5 - Effect of Catalyst -- 5.4 - Pyrolysis Kinetics -- 5.4.1 - Physical Aspects -- 5.4.2 - Chemical Aspects -- 5.4.2.1 - Cellulose -- 5.4.2.2 - Hemicellulose -- 5.4.2.3 - Lignin -- 5.4.3 - Kinetic Models of Pyrolysis -- 5.5 - Heat Transfer in a Pyrolyzer -- 5.5.1 - Is Pyrolysis Autothermal? -- 5.5.2 - Mass Transfer Effect -- 5.6 - Pyrolyzer Types -- 5.6.1 - Fixed-Bed Pyrolyzer -- 5.6.2 - Bubbling-Bed Pyrolyzer -- 5.6.3 - CFB Pyrolyzer -- 5.6.4 - Ultrarapid Pyrolyzer -- 5.6.5 - Ablative Pyrolyzer -- 5.6.6 - Rotating-Cone Pyrolyzer -- 5.6.7 - Vacuum Pyrolyzer -- 5.6.8 - Solar Pyrolyzer -- 5.7 - Pyrolyzer Design Considerations -- 5.7.1 - Production of Liquid Through Pyrolysis -- 5.7.2 - Effect of catalyst on liquid production -- 5.8 - Biochar -- 5.8.1 - Potential Benefits of Biochar -- Symbols and Nomenclature -- Chapter 6 - Tar Production and Destruction -- 6.1 - Introduction -- 6.2 - Tar -- 6.2.1 - Acceptable Limits for Tar -- 6.2.1.1 - Direct Combustion Application -- 6.2.1.2 - IC Engine Application -- 6.2.1.3 - Syngas Application -- 6.2.1.4 - Level of Tar Production -- 6.2.2 - Tar Formation -- 6.2.3 - Tar Composition -- 6.2.3.1 - Primary Tar -- 6.2.3.2 - Secondary Tar -- 6.2.3.3 - Tertiary Tar -- 6.3 - Tar Reduction -- 6.3.1 - In Situ Tar Reduction -- 6.3.1.1 - Reduction Reactions -- 6.3.1.2 - Operating Conditions -- 6.3.1.2.1 - Temperature -- 6.3.1.2.2 - Reactor Pressure -- 6.3.1.2.3 - Residence Time -- 6.3.1.2.4 - Gasification Medium -- 6.3.1.3 - Tar Reduction by Catalysts in Fluidized-Bed Gasifiers -- 6.3.1.3.1 - Dolomite.
,
6.3.1.3.2 - Olivine.
Additional Edition:
ebook version : ISBN 9780128130407
Language:
English