Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    UID:
    edocfu_9961558830202883
    Umfang: 1 online resource (245 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128210772
    Anmerkung: Front Cover -- Biogenic Volatile Organic Compounds and Climate Change -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Synthesis and function of biogenic volatile organic compounds -- 1.1 Plants -- 1.1.1 Mevalonate and methylerythritol phosphate pathways -- 1.1.1.1 Isoprene -- 1.1.1.2 Mono-, sesqui-, and diterpenes -- 1.1.2 Shikimate pathway -- 1.1.3 Octadecanoid pathway -- 1.1.4 Pectin methyl esterases generate methanol -- 1.1.5 Other enzymatic pathways leading to oxygenated- and sulfur-containing biogenic volatile organic compound production -- 1.2 Microbes -- 1.2.1 Bacteria -- 1.2.2 Fungi -- 1.3 Marine phytoplankton -- 1.3.1 Biosynthesis of biogenic volatile organic compounds -- 1.3.1.1 Dimethylsulfoniopropionate -- 1.3.1.2 Isoprene -- 1.3.1.3 Halogenated biogenic volatile organic compound -- 1.3.2 Seasonal and spatial variability in biogenic volatile organic compounds production in function of phytoplankton biolo... -- 1.4 Conclusions -- References -- 2 Biogenic volatile organic compound emissions in response to climate change-induced environmental stresses -- 2.1 Temperature and light -- 2.1.1 Temperature and light emission algorithms -- 2.1.2 The coefficients that define the temperature and light dependency -- 2.1.3 Implications of global warming -- 2.2 Water availability -- 2.2.1 Drought -- 2.2.2 Flooding -- 2.3 Biogenic volatile organic compound emissions in response to high CO2 and O3 concentrations -- 2.3.1 Effect of rising CO2 concentrations on biogenic volatile organic compound emissions -- 2.3.2 CO2-related biochemical control of biogenic volatile organic compound emissions -- 2.3.3 Effect of rising O3 concentrations on biogenic volatile organic compound emissions -- 2.3.4 O3-related biochemical control of biogenic volatile organic compound emissions. , 2.3.5 Summary of the response of biogenic volatile organic compound to CO2 and O3 increases -- 2.4 Biogenic volatile organic compounds and extreme stress -- 2.4.1 Is biogenic volatile organic compound emission a survival trait in extremophiles? -- 2.4.2 Resurrection plants: the mystery of biogenic volatile organic compound emissions under extreme physiological desiccation -- 2.4.3 Hyperaccumulation as a plant resource reveals the potential ecological biogenic volatile organic compound role under ... -- 2.5 Environmental stresses in aquatic ecosystems -- 2.5.1 Temperature -- 2.5.2 Light -- 2.5.3 Nutrient availability -- 2.5.4 Salinity and oxidative stress -- 2.6 Conclusions -- References -- 3 The power of communication: biogenic volatile organic compound-mediated interactions in land plants and marine phytoplankton -- 3.1 Ecological interactions mediated by biogenic volatile organic compounds in terrestrial and marine habitats: a crucial e... -- 3.2 Plant biogenic volatile organic compounds emitted aboveground for immune signaling and defense against phytopathogens -- 3.2.1 Antimicrobial biogenic volatile organic compounds -- 3.2.2 Biogenic volatile organic compounds in plant immune signaling -- 3.2.2.1 Methyl salicylate, methyl jasmonate and ethylene -- 3.2.2.2 Isoprene -- 3.2.2.3 Monoterpenes -- 3.2.2.4 Sesquiterpenes (i.e., β-caryophyllene) -- 3.3 Role of rhizosphere biogenic volatile organic compounds in beneficial plant-microbiome interactions -- 3.3.1 Effects of biogenic volatile organic compounds released by roots on rhizosphere microorganisms -- 3.3.2 Effects of rhizosphere microorganisms on biogenic volatile organic compounds emission capacity of plants -- 3.3.3 Effects of mVOCs on plant growth and fitness -- 3.3.4 Effects of mVOCs on plant resilience. , 3.4 Marine ecosystems: function of phytoplankton biogenic volatile organic compounds in controlling ecological interactions -- 3.5 Conclusion -- References -- 4 Making use of biogenic volatile organic compounds in sustainable agriculture and from aquatic ecosystems -- 4.1 Introduction -- 4.1.1 Facing a new global cha(lle)nge -- 4.1.2 Multifunctional role of biogenic volatile organic compounds -- 4.2 Application of biogenic volatile organic compounds in agriculture -- 4.2.1 At leaf level -- 4.2.1.1 Natural occurring biogenic volatile organic compound emissions -- 4.2.1.2 Artificial airborne delivery of biogenic volatile organic compounds -- 4.2.2 At root level -- 4.2.2.1 Emission of biogenic volatile organic compounds from beneficial soilborne bacteria and fungi -- 4.2.2.2 Soil applications of biogenic volatile organic compounds -- 4.2.2.2.1 Drenching, spraying, or fumigating biogenic volatile organic compounds -- 4.2.2.2.2 Inoculation of beneficial microbes emitting biogenic volatile organic compounds -- 4.3 Employing biogenic volatile organic compounds in future smart agriculture -- 4.3.1 Biogenic volatile organic compounds as biomarkers of plant growth and stress -- 4.3.1.1 In situ measurements of biogenic volatile organic compounds emissions -- 4.3.1.2 Remote sensing biogenic volatile organic compounds by unmanned aerial vehicles -- 4.3.2 Plants emitting biogenic volatile organic compounds in (re)diversified farming -- 4.3.3 Manipulating biogenic volatile organic compounds emissions for the creation of new crops -- 4.4 Economic and social potential of biogenic volatile organic compounds in aquatic ecosystems -- 4.5 Conclusions -- References -- 5 The role of biogenic volatile organic compounds and plant surfaces in the formation and scavenging of ozone and particula. , 5.1 Atmospheric chemistry of biogenic volatile organic compounds in a changing world -- 5.1.1 Introduction to biogenic volatile organic compounds chemistry in the atmosphere -- 5.1.2 Impact of biogenic volatile organic compounds on ozone pollution in rural and urban environments -- 5.1.3 Biogenic volatile organic compounds chemistry and atmospheric aerosols -- 5.2 The role of plant surfaces as sinks for ozone and particulate matter -- 5.2.1 General mechanisms through which plants remove gases and particles from the atmosphere -- 5.2.2 Dry deposition of ozone within plant canopies -- 5.2.2.1 Stomatal uptake -- 5.2.2.2 Cuticular uptake -- 5.2.2.3 In-canopy chemistry -- 5.2.3 Dry deposition of particulate matter on plant leaves -- 5.2.3.1 Factors impacting dry deposition efficiency -- 5.2.3.2 Mechanistic insights -- 5.3 Conclusions -- References -- 6 Biogenic volatile organic compounds, clouds, and climate -- 6.1 Effects of biogenic volatile organic compounds on cloud formation processes in terrestrial and marine environments -- 6.1.1 Introduction to aerosol-cloud interactions mediated by biogenic volatile organic compounds -- 6.1.2 Plant stress biogenic volatile organic compounds emissions alter climate-relevant cloud properties -- 6.1.3 Biogenic volatile organic compounds-aerosol-cloud interactions in the marine atmosphere -- 6.2 Climate feedbacks associated with BVOC-aerosol-cloud interactions in terrestrial systems -- 6.2.1 Overview of climate feedback loops mediated by BVOC-aerosol interactions -- 6.2.2 Global change drivers that influence BVOC-aerosol-cloud feedbacks -- 6.3 Conclusions -- References -- Index -- Back Cover.
    Weitere Ausg.: Print version: Brilli, Federico Biogenic Volatile Organic Compounds and Climate Change San Diego : Elsevier,c2024 ISBN 9780128210765
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz