Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin : Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät
    UID:
    edochu_18452_14349
    Content: Robust principal component pursuit (RPCP) refers to a decomposition of a data matrix into a low-rank component and a sparse component. In this work, instead of invoking a convex-relaxation model based on the nuclear norm and the `1 -norm as is typically done in this context, RPCP is solved by considering a least-squares problem subject to rank and cardinality constraints. An inexact alternating minimization scheme, with guaranteed global convergence, is employed to solve the resulting constrained minimization problem. In particular, the low-rank matrix subproblem is resolved inexactly by a tailored Riemannian optimization technique, which favorably avoids singular value decompositions in full dimen- sion. For the overall method, a corresponding q-linear convergence theory is established. The numerical experiments show that the newly proposed method compares competitively with a popular convex-relaxation based approach.
    Content: Peer Reviewed
    Note: The final publication is available at Springer via http://dx.doi.org/10.1007/s10851-014-0527-y
    In: Journal of Mathematical Imaging and Vision, : Springer, 2015, 51,2014,3, Seiten 361-377
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages