Format:
Online Ressource (ix, 492 p.)
,
graph. Darst.
Edition:
Online-Ausg. Amsterdam Elsevier Science & Technology Online-Ressource ScienceDirect
ISBN:
9780444514523
,
044451452X
,
0080459544
,
9780080459547
Content:
Hyperbolic Knots -- Colin Adams -- Braids: A Survey -- Joan S. Birman and Tara E. Brendle -- Legendrian and Transversal Knots -- John B. Etnyre -- Knot Spinning -- Greg Friedman -- The Enumeration and Classification of Knots and Links -- Jim Hoste -- Knot Diagrammatics -- Louis H. Kauffman -- A Survey of Classical Knot Concordance -- Charles Livingston -- Knot Theory of Complex Plane Curves -- Lee Rudolph -- Thin Position in the Theory of Classical Knots -- Martin Scharlemann -- Computation of Hyperbolic Structures in Knot Theory -- Jeff Weeks
Content:
Hyperbolic knots C. Adams -- Braids : a survey J.S. Birman T.E. Brendle -- Legendrian and transversal knots J.B. Etnyre -- Knot spinning G. Friedman -- The enumeration and classification of knots and links J. Hoste -- Knot diagrammatics L.H. Kauffman -- A survey of classical knot concordance C. Livingston -- Knot theory of complex plane curves L. Rudolph -- Thin position in the theory of classical knots M. Scharlemann -- Computation of hyperbolic structures in knot theory J. Weeks
Content:
This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics
Note:
Includes bibliographical references and indexes. - Description based on print version record
,
English
Additional Edition:
ISBN 044451452X
Additional Edition:
Druckausg. Handbook of knot theory Amsterdam : Elsevier, 2005 ISBN 9780444514523
Additional Edition:
ISBN 044451452X
Language:
English
Subjects:
Mathematics
Keywords:
Hyperbolische Mannigfaltigkeit
;
Knotentheorie
;
Electronic books
;
Electronic books
DOI:
10.1016/B978-0-444-51452-3.X5000-X
URL:
https://doi.org/10.1016/B978-0-444-51452-3.X5000-X
URL:
Volltext
(Deutschlandweit zugänglich)