Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    gbv_1652501398
    Umfang: Online-Ressource (XVIII, 537 p. 235 illus., 162 illus. in color, digital)
    ISBN: 9789400766396
    Serie: Remote Sensing and Digital Image Processing 17
    Inhalt: This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techniques for analyzing thermal data. Ground-breaking chapters on applications present a wide variety of case studies leading to a deepened understanding of land and sea surface temperature dynamics, urban heat island effects, forest fires, volcanic eruption precursors, underground coal fires, geothermal systems, soil moisture variability, and temperature-based mineral discrimination. ‘Thermal Infrared Remote Sensing: Sensors, Methods, Applications’ is unique because of the large field it spans, the potentials it reveals, and the detail it provides. This book is an indispensable volume for scientists, lecturers, and decision makers interested in thermal infrared technology, methods, and applications.
    Anmerkung: Description based upon print version of record , Foreword; Acknowledgements; Contents; Contributors; Chapter 1: Theoretical Background of Thermal Infrared Remote Sensing; 1.1 Introduction; 1.2 Theoretical Background; 1.2.1 The Thermal Infrared Domain and Atmospheric Windows; 1.2.2 Planck´s Law; 1.2.3 Stefan-Boltzmann Law; 1.2.4 Wien´s Displacement Law; 1.2.5 Kirchhoff´s Law and the Relevance of Emissivity; 1.3 Thermal Remote Sensing Data Acquisition; 1.3.1 Sensitivity of Thermal Infrared Sensors; 1.3.2 Daytime and Nighttime Data Acquisition; 1.4 Pre-processing of Thermal Remote Sensing Data; 1.5 Analysis of Thermal Infrared Data , 1.5.1 Considering Diurnal Temperature Dynamics: Thermal Inertia and Apparent Thermal Inertia1.5.2 Considering Intra-Annual Temperature Development: Implications for TIR Change Detection and Time Series Analysis; 1.5.3 Mapping Approaches Based on Varying TIR Emissivity; 1.5.4 Artefacts in Thermal Images; 1.5.5 Ground Truth and Validation; 1.6 Conclusions; References; Chapter 2: Geometric Calibration of Thermographic Cameras; 2.1 Camera Technology; 2.1.1 Physical Background; 2.1.2 Detectors; 2.2 Test Fields for Calibration; 2.2.1 Plane Test Field with Lamps , 2.2.2 Spatial Test Field with Coded Targets2.3 Calibration Results; 2.3.1 Cameras; 2.3.2 Results; 2.4 Applications; 2.4.1 2D Processing; 2.4.2 3D Processing; 2.4.3 Pan-Sharpening; 2.5 Summary; References; Chapter 3: Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing; 3.1 Introduction; 3.1.1 Application Examples; 3.2 Theoretical Background; 3.2.1 Directional-Hemispherical Reflectance (DHR); 3.2.2 Emissive Systems; 3.2.2.1 Spectrometer Calibration; 3.2.2.2 Retrieving Emissivity: Downwelling Radiance Correction , 3.2.2.3 Retrieving Emissivity: Sample TemperatureReference Channel; Blackbody Fit; Spectral Smoothness; 3.3 Instrumentation; 3.3.1 Laboratory Environment; 3.3.2 Field Equipment; 3.3.3 Other Developments; 3.4 Measurement Examples; 3.4.1 Solid Rocks; 3.4.2 Soils; 3.4.3 Vegetation; 3.4.4 Man-Made Materials; 3.5 Outlook; References; Chapter 4: Challenges and Opportunities for UAV-Borne Thermal Imaging; 4.1 Introduction; 4.2 Unmanned Aerial Vehicle; 4.2.1 Advantages and Disadvantages of UAVs as Sensor Platform; 4.2.2 Selection Criteria; 4.2.3 Selected System - Falcon 8; 4.3 TIR Camera , 4.3.1 TIR Camera Types for Application on UAVs4.3.2 Selection Criteria; 4.3.3 Selected System - mobileIR M4; 4.4 Field Application; 4.4.1 Planning the Field Campaign; 4.4.2 Conduction of the Field Campaign; 4.5 Data Processing; 4.5.1 Georeference; 4.5.2 Mosaicking; 4.6 Example: Thermal Imaging of Coal Fires; 4.6.1 Thermal Anomaly of Coal Fires; 4.6.2 Coal Fire on a Hillside (QueerGou, Xinjiang Province P.R. China); 4.6.3 Coal Fire on a Hilltop (Shuixigou, Xinjiang Province P.R. China); 4.7 Summary and Outlook; References; Chapter 5: NASA´s Hyperspectral Thermal Emission Spectrometer (HyTES) , 5.1 Introduction
    Weitere Ausg.: ISBN 9789400766389
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Thermal infrared remote sensing Dordrecht : Springer, 2013 ISBN 9789400766389
    Sprache: Englisch
    Fachgebiete: Technik , Geographie
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Fernerkundung ; Infrarotthermographie ; Thermalluftbild ; Fernerkundung ; Infrarot ; Thermalluftbild ; Aufsatzsammlung
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Mehr zum Autor: Kuenzer, Claudia
    Mehr zum Autor: Dech, Stefan 1960-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz