Umfang:
Online-Ressource (III, 249 S.)
Ausgabe:
Reproduktion 1994
ISBN:
9783110900101
,
9789067641722
Serie:
Inverse and Ill-Posed Problems Series 2
Inhalt:
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Inhalt:
""Preface""; ""Introduction""; ""1 Cauchy problem for Maxwell�s equations""; ""1.1 Maxwell�s equations as a hyperbolic symmetric system""; ""1.2 Structure of the Cauchy problem solution in case of the current located on the media interface""; ""2 One-Dimensional Inverse Problems""; ""2.1 Structure of the Fourier-image of the Cauchy problem solution for one-dimensional medium in case of the current located at a point""; ""2.2 The problem of determining the medium permittivity""; ""2.3 The problem of determining the conductivity coefficient
Inhalt:
""2.4 The problem of determining all the coefficients of Maxwell�s equations""""3 Multidimensional Inverse Problems""; ""3.1 Linearization method applied to the inverse problems""; ""3.2 Investigation of the linearized problem of determining the permittivity coefficient""; ""3.3 Unique solvability theorem for a two-dimensional problem of determining the conductivity coefficient analytic in one variable""; ""3.4 On the uniqueness of the solution of three-dimensional inverse problems""; ""4 Inverse Problems in the Case of Source Periodic in Time""; ""4.1 One-dimensional inverse problems
Inhalt:
""4.2 Linear one-dimensional inverse problem""""4.3 Linearized three-dimensional inverse problem""; ""5 Inverse Problems for Quasi-Stationary Maxwell�s Equations""; ""5.1 On correspondence between the solutions of quasi-stationary and wave Maxwell�s equations""; ""5.2 An one-dimensional inverse problem of determining the conductivity and permeability coefficients""; ""5.3 The one-dimensional inverse problem for wave-quasistationary system of equations""; ""6 The Inverse Problems for the Simplest Anisotropic Media
Inhalt:
""6.1 On the uniqueness of determination of permittivity and permeability in anisotropic media""""6.2 On the problem of determining permittivity and conductivity tensors""; ""7 Numerical Methods""; ""7.1 Projection method for solving the Multidimensional Inverse Problems""; ""7.2 One-dimensional problems""; ""7.3 Two-dimensional direct problems""; ""7.4 Finite-difference scheme inversion (FDSI)""; ""7.5 Linearization method""; ""7.6 Newton-Kantorovich method""; ""7.7 Optimization methods""; ""7.8 Dynamical version of the Gel�fand-Levitan method""; ""8 Convergence Results
Inhalt:
""8.1 Definitions and examples""""8.2 Local well-posedness and uiqueness on the whole""; ""8.3 Well-posedness in a neighborhood of the exact solution""; ""8.4 Convergence of the finite-difference scheme inversion""; ""9 Examples""; ""9.1 Inductive dielectric well-logging""; ""9.2 Nearsurface radarlocation problem""; ""References
Anmerkung:
Description based upon print version of record
,
FrontmatterContentsPrefaceINTRODUCTIONCHAPTER 1. Cauchy Problem for Maxwell’s EquationsCHAPTER 2. One-Dimensional Inverse ProblemsCHAPTER 3. Multidimensional Inverse ProblemsCHAPTER 4. Inverse Problems in the Case of A Source Periodic in TimeCHAPTER 5. Inverse Problems for Quasi-Stationary Maxwell’s EquationsCHAPTER 6. The Inverse Problems for the Simplest Anisotropic MediaCHAPTER 7. Numerical MethodsCHAPTER 8. Convergence ResultsCHAPTER 9. ExamplesREFERENCES.
,
In English
Weitere Ausg.:
ISBN 9783111827445
Weitere Ausg.:
ISBN 9789067641722
Weitere Ausg.:
Erscheint auch als Druck-Ausgabe ISBN 9783111827445
Weitere Ausg.:
Erscheint auch als Druck-Ausgabe Romanov, Vladimir G. Inverse problems for Maxwell's equations Utrecht : VSP, 1994 ISBN 9067641723
Sprache:
Englisch
Fachgebiete:
Mathematik
Schlagwort(e):
Maxwellsche Gleichungen
;
Inverses Problem
;
Electronic books
DOI:
10.1515/9783110900101
URL:
Volltext
(lizenzpflichtig)
Mehr zum Autor:
Romanov, Vladimir G.