Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    gbv_1794152474
    Umfang: 1 Online-Ressource(X, 283 p. 61 illus., 40 illus. in color.)
    Ausgabe: 1st ed. 2022.
    ISBN: 9783030974541
    Serie: Lecture Notes in Artificial Intelligence 13191
    Inhalt: Embedding Models for Knowledge Graphs Induced by Clusters of Relations and Background Knowledge -- Fanizzi Automatic Conjecturing of P-Recursions Using Lifted Inference -- Machine learning of microbial interactions using Abductive ILP and Hypothesis Frequency/Compression Estimation -- Answer-Set Programs for Reasoning about Counterfactual Interventions and Responsibility Scores for Classification -- Reyes Synthetic Datasets and Evaluation Tools for Inductive Neural Reasoning -- Using Domain-Knowledge to Assist Lead Discovery in Early-Stage Drug Design -- Non-Parametric Learning of Embeddings for Relational Data using Gaifman Locality Theorem -- Ontology Graph Embeddings and ILP for Financial Forecasting -- Transfer learning for boosted relational dependency networks through genetic algorithm -- Online Learning of Logic Based Neural Network Structures -- Programmatic policy extraction by iterative local search -- Mapping across relational domains for transfer learning with word embeddings-based similarity -- A First Step Towards Even More Sparse Encodings of Probability Distributions -- Feature Learning by Least Generalization -- Learning Logic Programs Using Neural Networks by Exploiting Symbolic Invariance -- Learning and revising dynamic temporal theories in the full Discrete Event Calculus -- Human-like rule learning from images using one-shot hypothesis derivation -- Generative Clausal Networks: Relational Decision Trees as Probabilistic Circuits -- A Simulated Annealing Meta-heuristic for Concept Learning in Description Logics. .
    Inhalt: This book constitutes the refereed conference proceedings of the 30th International Conference on Inductive Logic Programming, ILP 2032, held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 16 papers and 3 short papers presented were carefully reviewed and selected from 19 submissions. Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data.
    Weitere Ausg.: ISBN 9783030974534
    Weitere Ausg.: ISBN 9783030974558
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783030974534
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783030974558
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz