Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    UID:
    gbv_1823900372
    Format: 1 Online-Ressource(VI, 99 p.)
    Edition: 1st ed. 2007.
    ISBN: 9783031017025
    Series Statement: Synthesis Lectures on Computational Electromagnetics
    Content: Contents: Basics of the FDFD Method -- IMR Technique for Large-Scale Electromagnetic Scattering Problems: 3D Case -- IMR Technique for Large-Scale Electromagnetic Scattering Problems: 2D Case -- The IMR Algorithm Using a Hybrid FDFD and Method of Moments Technique -- Parallelization of the Iterative Multiregion Technique -- Combined Multigrid Technique and IMR Algorithm -- Concluding Remarks -- Appendices.
    Content: In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the iterative multiregion (IMR) technique. Different enhancement procedures are investigated and introduced toward the construction of this technique. These procedures are the following: 1) a hybrid technique combining the IMR technique and a method of moment technique is found to be efficient in producing accurate results with a remarkable computer memory saving; 2) the IMR technique is implemented on a parallel platform that led to a tremendous computational time saving; 3) together, the multigrid technique and the incomplete lower and upper preconditioner are used with the IMR technique to speed up the convergence rate of the final solution, which reduces the total computational time. Thus, the proposed iterative technique, in conjunction with the enhancement procedures, introduces a novel approach to solving large open-boundary electromagnetic problems including unconnected objects in an efficient and robust way. Contents: Basics of the FDFD Method / IMR Technique for Large-Scale Electromagnetic Scattering Problems: 3D Case / IMR Technique for Large-Scale Electromagnetic Scattering Problems: 2D Case / The IMR Algorithm Using a Hybrid FDFD and Method of Moments Technique / Parallelization of the Iterative Multiregion Technique / Combined Multigrid Technique and IMR Algorithm / Concluding Remarks / Appendices.
    Additional Edition: ISBN 9783031005749
    Additional Edition: ISBN 9783031028304
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9783031005749
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9783031028304
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages