Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Boston, MA : Kluwer Academic Publishers
    UID:
    gbv_524967377
    Umfang: Online-Ressource , v.: digital
    Ausgabe: Online-Ausg. Springer-11645
    Ausgabe: Springer eBook Collection. Computer Science
    ISBN: 9780306470189
    Serie: The International Series in Engineering and Computer Science 547
    Inhalt: The scope and methods of the study -- Numerical Data Mining Models and Financial Applications -- Rule-Based and Hybrid Financial Data Mining -- Relational Data Mining (RDM) -- Financial Applications of Relational Data Mining -- Comparison of Performance of RDM and other methods in financial applications -- Fuzzy logic approach and its financial applications.
    Inhalt: Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book focuses specifically on relational data mining (RDM), which is a learning method able to learn more expressive rules than other symbolic approaches. RDM is thus better suited for financial mining, because it is able to make greater use of underlying domain knowledge. Relational data mining also has a better ability to explain the discovered rules - an ability critical for avoiding spurious patterns which inevitably arise when the number of variables examined is very large. The earlier algorithms for relational data mining, also known as inductive logic programming (ILP), suffer from a relative computational inefficiency and have rather limited tools for processing numerical data. Data Mining in Finance introduces a new approach, combining relational data mining with the analysis of statistical significance of discovered rules. This reduces the search space and speeds up the algorithms. The book also presents interactive and fuzzy-logic tools for `mining' the knowledge from the experts, further reducing the search space. Data Mining in Finance contains a number of practical examples of forecasting S&P 500, exchange rates, stock directions, and rating stocks for portfolio, allowing interested readers to start building their own models. This book is an excellent reference for researchers and professionals in the fields of artificial intelligence, machine learning, data mining, knowledge discovery, and applied mathematics.
    Weitere Ausg.: ISBN 9780792378044
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9781475773323
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9780792378044
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9781475773316
    Sprache: Englisch
    Schlagwort(e): Data Mining ; Finanzwirtschaft ; Bibliographie enthalten
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz