Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    kobvindex_GFZ20201124142223
    Format: iv, 17 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory 47
    Content: Summary: Various mechanical properties such as strength, elastic modulus, and density of TUTO tunnel and ramp ice were determined. Results of unconfined compressive strength, ring tensile strength, and flexural strength tests are given. Photographs of included bubbles and grain size and shape are shown for each of six types of ice tested. Petrofabric diagrams for each type of ice are included. No significant differences in strength were found between horizontal and vertical cores in the ice tunnel, although differences between types of ice are noted. Crushing strength values found for tunnel ice generally fit the empirical equation relating crushing strength to density which was found for high-density snows (Butkovich, 1956a). However the values for ramp ice do not fit the equation when the average density values are used, probably due to the layering. The empirical equation relating ring tensile strength to density of high-density snows (ibid.) gives results approximately 20% greater than those obtained for tunnel ice. It appears that grain size influences the results. Ice with large grains consistently gives lower values. Flexural strength of the ramp ice is about half that of the tunnel ice. Comparing these results with the ring tensile values leads to the conclusion that the beams tend to fail in the lowest-density (mostly bubbly) bands. Temperature curves as a function of depth into the wall and along the tunnel length are presented. A 30-day study of deformation in a 100 x 30 ft room at 650 ft. into the tunnel indicated that the room is closing primarily by a block action, with rates of closure being less only very near the walls.
    Note: CONTENTS Preface Summary Introduction Strength Crushing strength Ring tensile strength Flexural strength Static modulus of elasticity Dynamic modulus of elasticity Density of tunnel and ramp ice Tunnel temperature measurements Crystal size, bubble size, and ice fabrics Deformation measurements Discussion of strength test results References
    In: Research report / Cold Regions Research and Engineering Laboratory, 47
    Language: English
    Keywords: Forschungsbericht
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages