Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    kobvindex_GFZ95192_2
    Format: 1 Online-Ressource (122 Seiten) , Illustrationen, Diagramme, Tabellen
    ISSN: 0514-8790
    Series Statement: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 92
    Content: Die Darstellung des Gravitationsfeldes durch Überlagerung von Punktmassenpotentialen wird diskutiert und eingeordnet. Es wird das Problem der Optimierung der Punktmassenpositionen näher untersucht. Dazu werden die Punktmassenpotentiale als Hilbertraumvektoren aufgefaßt. Es gelingt, einen Algorithmus zu erarbeiten, mit dessen Hilfe ein vorgegebenes Feld in Form von Meßwerten auf der Erdoberfläche durch schrittweise Erhöhung der Zahl der Punktmassen approximiert werden kann, wobei die Punktmassenpositionen nach jedem Schritt optimal sind. Anhand simulierter Daten werden eine Reihe von Punktmassenmodellen berechnet. Vergleiche mit gleichmäßig verteilten Punktmassen und mit Kugelfunktionen, die Analyse der Spektren sowie die Modellierung von Satellitenbahnen zeigen die Vorteile des Verfahrens.
    Note: Zugl.: Potsdam, Akad. der Wiss. der DDR, FB Geo- und Kosmoswiss., Zentralinst. für Physik der Erde, Diss. A, 1986 , Liste der verwendeten Formelzeichen Summary резюме Zusammenfassung 1. Wozu Kenntnis und Darstellung des Gravitationsfeldes? 2. Verschiedene Ziele - verschiedene Darstellungsformen für das Gravitationsfeld 2.1. Zum Begriff "Darstellung" 2.2. Anforderungen an die Darstellung 2.3. Einige häufig genutzte Darstellungsformen 2.3.1. Kollokation als direkte Darstellungsform 2.3.2. Integralformeln 2.3.3. Quellendarstellung 2.3.4. Kugelfunktionsentwicklung 2.3.5. Multipole 2.3.6. Modell einer einfachen Massenschicht 2.3.7. Samplingfunktionen 2.3.8. Finite Elemente 2.3.9. Spline - Funktionen 2.3.10. Harmonische Kernfunktionen 2.3.11. Multiquadratische Methode 2.3.12. DIRAC - Impulsmethode nach Bjerhammar 2.4. Die Darstellung des Gravitationsfeldes durch Punktmassen 2.4.1. Verschiedene Zugänge - Beziehungen zu anderen Darstellungsformen 2.4.2. Bisherige praktische Anwendungen 2.4.3. Potentielle Möglichkeiten der Punktmassendarstellung 3. Punktmassenapproximation mit automatischer Optimierung der Orte der Massen 3.1. Punktmassenpotentiale als Basissystem im Hilbertraum 3.1.1. Einige Definitionen aus der Funktionalanalysis 3.1.2. Vollständigkeit der Punktmassenpotentiale 3.1.3. Lineare Unabhängigkeit 3.2. Ausarbeitung eines Approximationsalgorithmus' 3.2.1. Formulierung des Algorithmus' 3.2.2. Wahl des Skalarprodukts/Skalarprodukt zweier Punktmassenpotentiale 3.2.2.1. Das Skalarprodukt ... für Punktmassenpotentiale in Abhängigkeit vom Ort der Punktmassen 3.2.2.2. Das Skalarprodukt ... für Punktmassenpotentiale in Abhängigkeit vom Ort der Punktmassen 3.2.2.3. Diskussion der beiden Skalarprodukte 3.2.3. Die Bestimmung des Anfangsortes jeder neuen Punktmasse 3.3. Diskussion des Algorithmus' 3.3.1. Zur Auswahl der N-ten Punktmasse aus der Menge E³\Q 3.3.2. Abschätzung der Quasiorthogonalität - Wahl des Normalfeldes 3.3.3. Einige Überlegungen zur Konvergenz des Algorithmus' 3.3.4. Einige Bemerkungen zur Anwendung des SCHMIDTschen Orthonormalisierungeverfahrens auf Punktmassenpotentiale 3.3.5. Anwendbarkeit des Algorithmus' auf andere Approximationsaufgaben 3.4. Darstellung des Normalpotentials durch Punktmassen 4. Numerische Realisierung des Algorithmus' 4.1. Simulation der zu approximierenden Randwerte 4.2. Praktische Bestimmung der Startwerte für die Punktmassenpositionen 4.3. Die Bestimmung der Massen für vorgegebene Orte 4.4. Die Verbesserung der Punktmassenpositionen ausgehend von Näherungswerten 4.4.1. Lösung des nichtlinearen Problems 4.4.2. Regularisierung 4.4.3. Berechnung der Zuschläge in sphärischen Koordinaten 4.5. Zur Berechnung von Modellen gleichmäßig verteilter Punktmassen 4.6. Maßnahmen zur Rechenzeiteinsparung 4.6.1. Reduzierung der Zahl der in jedem Schritt zu optimierenden Punktmassen 4.6.2. Reduzierung der Zahl der in jedem Schritt einbezogenen Randwerte 4.7. Der Algorithmus als Kernstück des Programms PUMA 4.7.1. Endgültige, praxisbezogene Formulierung des Algorithmus' 4.7.2. Möglichkeiten des Programms PUMA zur Berechnung von Punktmassenmodellen 5. Ableitung und Test von Punktmassenmodellen/Diskussion der Ergebnisse 5.1. Berechnung der Punktmassenmodelle 5.1.1. Welche Modelle wurden berechnet? 5.1.2. Numerische Stabilität der Lösungen 5.1.3. Verringerung der Zahl der verwendeten Randwerte 5.2. Approximationsgenauigkeit/Konvergenzgeschwindigkeit 5.2.1. Quasiorthogonalität und Einfluß des Parameters Nε 5.2.2. Vergleich der Approximation der beiden Sätze von Randwerten 5.2.3. Vergleich mit gleichverteilten Punktmassen und Kugelfunktionsentwicklung 5.3. Vergleich der Spektren von Punktmassenmodellen und approximiertem Modell GEM 10 5.3.1. Gesamtmasse und Kugelfunktionskoeffizienten niedrigen Grades 5.3.2. Vergleich der Gradvarianzen / die Spektren der Restfehler 5.4. Test der Punktmassenmodelle durch Satellitenbahnberechnung 6. Resümee Literaturverzeichnis
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 92
    Additional Edition: Druckausgabe Untersuchungen zur Approximation des äußeren Gravitationsfeldes der Erde durch Punktmassen mit optimierten Positionen
    Language: German
    Keywords: Electronic books ; Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages