Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Duxford, Kidlington England ; : Woodhead Publishing,
    UID:
    almafu_9961089681002883
    Umfang: 1 online resource (596 pages)
    ISBN: 9780081020975 , 008102097X , 9780081020968 , 0081020961
    Serie: Woodhead Publishing series in electronic and optical materials
    Anmerkung: Front Cover -- Single Crystals of Electronic Materials -- Related titles -- Single Crystals of Electronic Materials -- Contents -- List of Contributors -- 1 - Electronic materials and crystal growth -- 2 - Silicon single crystals -- 2.1 Introduction -- 2.2 Applications and requirements of silicon crystalline material -- 2.3 Thermodynamic properties and definition of suitable growth technologies -- 2.4 Schematics of growth methods for silicon -- 2.5 Description of up-to-date growth technologies/processes -- 2.6 Tailoring crystal properties via growth parameters -- 2.7 Benefits of computer modeling -- 2.8 Doping issues and reduction of defect density -- 2.9 State-of-the-art of the material -- 2.10 New trends and future developments -- 2.11 Summary -- References -- Further reading -- 3 - Solar silicon -- 3.1 Introduction -- 3.2 The CZ method -- 3.2.1 Hot-zone design -- 3.2.2 Power consumption and pulling rate -- 3.2.3 Argon consumption and graphite degradation -- 3.2.4 Multiple charges -- 3.2.5 Coated crucible -- 3.2.6 The continuous CZ method -- 3.2.7 Quality improvement -- 3.3 The DS method -- 3.3.1 HP mc-Si -- 3.3.2 ML silicon -- 3.3.2.1 Nucleation from the crucible wall -- 3.3.2.2 Seed cost -- 3.3.2.3 Defect formation -- 3.3.2.4 Codoping and gettering -- 3.4 Conclusions and future perspectives -- List of abbreviations and acronyms -- Acknowledgments -- References -- 4 - Germanium crystals -- 4.1 Introduction -- 4.2 Basic properties -- 4.3 Material preparation -- 4.4 Ge crystal growth -- 4.4.1 Bridgman growth -- 4.4.2 Czochralski growth -- 4.4.3 Dislocation-free crystal growth -- 4.4.3.1 Seeding -- 4.4.3.2 Dash necking -- 4.4.3.3 New CZ method -- 4.5 Growth-related phenomena -- 4.5.1 Periphery facets -- 4.5.2 Segregation -- 4.5.3 Interface instabilities -- 4.5.3.1 Striations -- 4.5.3.2 X-ray topographic observations. , 4.5.3.3 Critical concentration and velocity in constitutional supercooling -- 4.6 Structural defects -- 4.6.1 Native point defects -- 4.6.2 Oxygen donors -- 4.6.3 Dislocations -- 4.7 Applications -- 4.7.1 Ge crystals for infrared optics -- 4.7.2 Ge crystals for radiation detection -- 4.7.3 Ge crystals for electronics and photonics -- 4.7.4 GeSi and GeSn -- 4.8 Concluding remarks -- References -- 5 - Silicon carbide -- 5.1 Applications of silicon carbide and materials requirements -- 5.2 Thermodynamic properties and suitable growth technologies -- 5.3 Description of SiC bulk growth methods -- 5.4 Tailoring of crystal properties via growth parameters -- 5.5 Benefits of computer modeling -- 5.6 Doping issues and reduction of defect density -- 5.7 State of the art of SiC material -- 5.8 New trends and future developments -- References -- 6 - III Arsenide -- 6.1 Introduction -- 6.2 Comparison of properties -- 6.2.1 Physical properties -- 6.2.2 Crystallographic properties -- 6.2.3 Chemical properties -- 6.3 Applications and availability -- 6.3.1 BAs -- 6.3.2 AlAs -- 6.3.3 GaAs -- 6.3.4 InAs -- 6.3.5 TlAs -- 6.4 Requirements for the substrate -- 6.4.1 Crystal defects, characterization, and requirements -- 6.4.2 Electrical properties, characterization, and requirements -- 6.4.3 Mechanical and surface specification of wafers, requirements and characterization -- 6.5 Growth of GaAs crystals -- 6.5.1 Synthesis of feedstock -- 6.5.1.1 Low-pressure synthesis -- 6.5.1.2 High-pressure synthesis -- 6.5.2 Crystal growth techniques -- 6.5.2.1 Liquid encapsulation Czochralski -- 6.5.2.2 Vertical gradient freeze -- 6.5.3 Modeling of transport phenomena -- 6.5.3.1 General considerations -- 6.5.3.2 Modeling approach -- 2D versus 3D -- Quasisteady state versus transient -- Optimization by inverse modeling versus by artificial neural networks -- 6.5.3.3 Furnace design. , 6.5.3.4 Modeling examples -- Geometry optimization -- Process optimization -- Process intensification -- 6.5.3.5 Conclusions of modeling -- 6.6 Wafer and sample preparation -- Nomenclature for Chapter 6.5.3 -- Greek symbols -- Subscripts -- References -- 7 - Indium phosphide -- 7.1 Applications and requirements of indium phosphide -- 7.2 Thermodynamic properties and definition of suitable growth technologies -- 7.2.1 Properties of InP -- 7.2.2 Challenges for crystal growth -- 7.2.2.1 Twinning -- 7.2.2.2 Doping uniformity -- 7.2.2.3 Dislocation density -- 7.3 Schematics for synthesis and crystal growth apparatus -- 7.3.1 InP synthesis -- 7.3.1.1 Polycrystal synthesis -- 7.3.1.2 Direct synthesis -- 7.3.2 Crystal growth apparatus -- 7.4 Benefits of computer modeling -- 7.5 Tailoring crystal properties via growth technology -- 7.5.1 Crystal pulling -- 7.5.1.1 Vapor-controlled LEC -- 7.5.1.2 Magnetic stabilization techniques -- 7.5.2 Vertical container growth -- 7.6 Doping issues and reduction of defect density -- 7.6.1 Semiconducting InP -- 7.6.2 Semiinsulating bulk InP -- 7.6.2.1 Compensation mechanism of InP:Fe -- 7.6.2.2 Annealing and the role of hydrogen -- 7.7 New trends and future developments -- References -- 8 - Cadmium telluride and cadmium zinc telluride -- 8.1 Applications and requirements -- 8.2 Thermodynamic properties and definition of suitable growth technologies -- 8.3 Synthesis of the polycrystalline material -- 8.4 Description of up-to-date growth technologies/processes -- 8.4.1 Crystal growth from the melt -- 8.4.1.1 Liquid-encapsulated Czochralski -- 8.4.1.2 Directional solidification -- 8.4.1.3 Vapor-pressure-controlled Bridgman growth -- 8.4.1.4 High-pressure Bridgman -- 8.4.1.5 Boron oxide encapsulated vertical Bridgman -- 8.4.2 Vapor-phase growth -- 8.4.3 Traveling heater method -- 8.5 Benefits of computer modeling. , 8.6 Postgrowth thermal treatments -- 8.7 State of the art of CdTe and CdZnTe crystals -- 8.7.1 X-ray and gamma-ray detector application -- 8.7.2 Substrates for IR devices -- 8.8 New trends and future developments -- References -- 9 - II sulfides and II selenides: growth, properties, and modern applications -- 9.1 Introduction -- 9.2 Zinc sulfide: classical phosphor and new compositions -- 9.3 Zinc-selenide compounds: scintillation properties and crystal growth -- 9.4 Multi-energy radiography based on A2B6 scintillators for security and medical applications -- 9.5 II selenides with metal dopants: laser applications and improved growth -- References -- 10 - Diamond -- 10.1 Introduction -- 10.2 Growth technologies for artificial diamond -- 10.3 Promotion of predominant crystal surfaces via growth parameters -- 10.4 Benefits of computer modeling -- 10.5 Issues in large-size wafer production -- 10.6 Doping -- 10.7 Processing techniques -- 10.8 New trends and future developments in the growth technique and applications -- References -- Further Reading -- 11 - Gallium nitride -- 11.1 Overview of applications -- 11.2 Single crystal growth technologies -- 11.3 Ammonothermal method -- 11.3.1 Fundamentals of the method -- 11.3.1.1 General -- 11.3.1.2 Solubility -- 11.3.1.3 Solvent -- 11.3.1.4 Growth -- 11.3.2 Growth systems -- 11.3.2.1 Externally heated autoclave -- 11.3.2.2 Anvil-style pressure vessel -- 11.3.3 State-of-the-art crystals -- 11.3.4 Point defects -- 11.3.4.1 Impurities -- 11.3.4.2 Gallium vacancies -- 11.3.4.3 Doping -- 11.3.5 Growth rate -- 11.3.6 Computer modeling -- 11.3.7 Future developments -- 11.4 Na-flux method -- 11.4.1 Fundamentals of method -- 11.4.1.1 General overview -- 11.4.1.2 Melt properties and solubility -- 11.4.2 Growth systems -- 11.4.2.1 Externally heated systems -- 11.4.2.2 Internally heated systems. , 11.4.3 State-of-the-art crystals -- 11.4.3.1 Self-nucleated and point-seed growth -- 11.4.3.2 Multipoint-seed growth -- 11.4.4 Melt modifications -- 11.4.4.1 Growth rate and carbon additives -- 11.4.4.2 Effect of temperature, pressure, and melt composition -- 11.4.4.3 Agitation of the melt -- 11.4.4.4 Melt additives -- 11.4.5 Crystal properties -- 11.4.5.1 Dislocation reduction -- 11.4.5.2 Doping -- 11.4.6 Future developments -- 11.5 Hydride vapor phase epitaxy -- 11.5.1 Fundamentals of method -- 11.5.1.1 General overview -- 11.5.1.2 Gas thermodynamics of growth -- 11.5.2 Growth systems -- 11.5.3 State-of-the-art crystals -- 11.5.3.1 Foreign seeds -- 11.5.3.2 Native seeds -- 11.5.4 Point defects -- 11.5.4.1 Doping -- 11.5.4.2 Impurities -- 11.5.4.3 Ga vacancies -- 11.5.5 Crystal properties -- 11.5.5.1 Optical, electronic, and structural properties -- 11.5.5.2 Anisotropic growth -- 11.5.6 Computational contributions -- 11.5.7 Future developments -- References -- 12 - Growth of AlN and GaN crystals by sublimation -- 12.1 Introduction -- 12.2 Methods of AlN and GaN bulk crystal growth -- 12.3 Goals of the present review -- 12.4 The sublimation sandwich method (SSM) -- 12.4.1 Sublimation growth of AlN bulk crystals -- 12.4.1.1 Growth on AlN seeds -- 12.4.1.2 Growth on SiC seeds -- 12.4.1.3 Issues in sublimation of bulk AlN crystals on SiC seeds -- Low nitrogen sticking coefficients -- High reactivity of vapors -- Low AlN evaporation coefficients -- The influence of residual oxygen -- The influence of silicon and carbon -- 12.4.1.4 Growth process of AlN crystals -- Optimization of the growth zone -- Dependence of AlN growth rate on nitrogen pressure -- Dependence of AlN growth rate on source-to-seed distance -- Substrate orientation -- Characterization -- 12.4.1.5 Freestanding single crystal AlN wafers grown by the SiC substrate evaporation method. , Conclusion regarding preparation of freestanding AlN wafers.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz