UID:
almahu_9948212029202882
Umfang:
1 online resource (332 pages).
ISBN:
0-444-64281-1
,
0-444-64191-2
Serie:
New and Future Developments in Microbial Biotechnology and Bioengineering
Anmerkung:
Front Cover -- New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biotechnology in Agro- Environmental ... -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- Chapter 1: Activity and Diversity of Aerobic Methanotrophs in Thermal Springs of the Russian Far East -- 1.1. Introduction -- 1.2. Terrestrial Thermal Springs of the Russian Far East: Overviev of Thermal Springs -- 1.3. Origin and Geographical Distribution of Terrestrial Russian Far East Thermal Springs -- 1.4. Composition of Hydrothermal Fluids -- 1.5. Microbial Communities of Hydrothermal Springs -- 1.6. Methane Cycling in Hot Springs Methane Formation -- 1.7. Composition of Magmatic Gases -- 1.8. Methanogenic activity -- 1.9. Activity and Diversity of Methanotrophic Communities in Thermal Springs -- 1.9.1. Methane Oxidation -- 1.10. Methanotrophs: A Brief Introduction -- 1.11. Classification of Methanotrophs -- 1.12. Thermophilic Methanotrophs -- 1.13. Methanotrophic Communities of Terrestrial Geothermal Springs -- 1.14. Methane Oxidation in Hot Springs of Far-East Russian Volcanic Belt: Kamchatka and Kuril Islands -- 1.15. Intensity of CH4 Oxidation Evaluated by Ratio-Tracer Analysis -- 1.16. Quantification of Aerobic Methanotrophs in Thermal Springs: Number of Copies of pmoA, mxaF and 16S rRNA Genes -- 1.17. Evaluation of Active Methanotrophs by Fish Technique -- 1.18. Diversity of Methanotrophs in Thermal Springs Based on PCR-DGGE Analysis of pmoA Genes -- 1.19. Isolation and Characterization of Methane-Oxidation Cultures -- 1.20. Growth of Enrichments -- 1.21. Study of the Phylogenetic Diversity of Enriched Methanotrophic Cultures -- 1.22. Conclusions -- References -- Further Reading -- Chapter 2: Promoting Crop Growth With Symbiotic Microbes in Agro-Ecosystems in Climate Change Era -- 2.1. Introduction.
,
2.2. Climate Change: An Unavoidable Event -- 2.2.1. Influence of Climate Change on Agricultural Production -- 2.2.2. How to Cope With Climate Change -- 2.3. Responses of Symbiotic Microbes to Climate Change -- 2.3.1. Arbuscular Mycorrhizal Fungi -- AMF Community -- AMF Colonization -- Functioning of AMF -- 2.3.2. Rhizobia -- Nodulation -- Functioning of Rhizobia -- 2.4. Promotion of Crop Production With Symbiotic Microbes in Response to Climate Change -- 2.4.1. Drought -- 2.4.2. Elevated CO2 -- 2.4.3. N deposition -- 2.5. Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 3: Bacillus: Plant Growth Promoting Bacteria for Sustainable Agriculture and Environment -- 3.1. Introduction -- 3.2. Bacillus Genus and Their PGP Potentials for Sustainable Agriculture -- 3.3. Direct Mechanisms of Plant Growth Promotion -- 3.3.1. Nitrogen Fixation -- 3.3.2. Nutrient Solubilization -- 3.3.3. Siderophores Production -- 3.4. Indirect Mechanisms of Plant Growth Promotion -- 3.4.1. Biocontrol Activity -- 3.4.2. EPSs Production and Biofilm Formation -- 3.4.3. Role of Bacillus Genus in Plant Growth Promotion -- 3.4.4. Role of Paenibacillus in Plant Growth -- 3.4.5. Role of Brevibacillus in Plant Growth -- 3.4.6. Role Virgibacillus in Plant Growth -- 3.4.7. Role of Lysinibacillus in Plant Growth -- 3.5. Bacillus Genome Sequencing and Its Applications -- 3.6. Conclusion and Future Prospects -- Acknowledgments -- References -- Further Reading -- Chapter 4: Role of Microbes in Restoration Ecology and Ecosystem Services -- 4.1. Introduction -- 4.2. Key Concept -- 4.3. Significance of Restoration Ecology -- 4.4. Importance of Microbes in Maintaining Ecology -- 4.5. Beneficial Microbes in Ecological Restoration -- 4.5.1. Prokaryotes -- Bacteria -- Plant Growth-Promoting Rhizobacteria -- Microbial-Mediated Organic Matter Decomposition.
,
Nitrogen-Fixing Microbes -- Microbial-Mediated Bioremediation -- Microbial Surfactants -- Microbial-Mediated Wastewater Management -- 4.5.2. Eukaryotes -- Protists -- Fungi -- 4.6. Role of Viruses in Ecosystem Restoration -- 4.7. Production of Phytohormones -- 4.8. Induced Systemic Resistance and Plant Growth Promotion -- 4.9. Improvement of Soil Aggregation -- 4.10. Improvement of Plant Nutrition and Nutrient Cycling Index -- 4.11. Increase Plants Abiotic Stress Tolerance and Tolerance to Pathogens and Herbivores -- 4.12. Influence of Plants Microbial Population Inside Soil -- 4.13. Future Challenges -- 4.14. Conclusions -- References -- Further Reading -- Chapter 5: The Role of Plant-Associated Bacteria in Phytoremediation of Trace Metals in Contaminated Soils -- 5.1. Introduction -- 5.2. Plant Growth Promoting Rhizobacteria: The Potential Root Colonizers -- 5.3. Plant Growth Promotion: The Mechanism of Action -- 5.4. Direct Mechanism -- 5.4.1. Nitrogen Fixation -- 5.4.2. Phosphate Solubilization -- 5.4.3. Auxins -- 5.4.4. ACC Deaminase -- 5.4.5. Hydrogen Cyanide -- 5.5. Indirect Mechanism -- 5.5.1. Antibiosis -- 5.5.2. Siderophores -- 5.5.3. Lytic Enzymes -- 5.6. Microbial Mechanism to Combat Metal Stress -- 5.7. Pgpr-Mediated Phytoremediation of Metal-Polluted Soils -- 5.8. Conclusions -- References -- Further Reading -- Chapter 6: Algae as a Sustainable and Renewable Bioresource for Bio-Fuel Production -- 6.1. Introduction -- 6.2. Micro and Macro-Algae Features -- 6.3. Sustainable Development of Algae -- 6.4. Indian Scenario of Algal Cultivation -- 6.5. International Scenario of Algal Cultivation -- 6.6. Microalgae Sustainability -- 6.7. Macroalgae Sustainability -- 6.8. Microalgae Renewable Features -- 6.9. Macroalgae Renewable Features -- 6.10. Algal Biofuel Production and Its Importance -- 6.11. Process Optimization and Kinetics.
,
6.12. Economic Value -- 6.13. Securing Biofuel Production and Sustainability Criteria for Biofuel -- 6.14. Uses of Sustainability Indicators -- 6.15. Conclusions -- References -- Further Reading -- Chapter 7: A Green Nano-Synthesis to Explore the Plant Microbe Interactions -- 7.1. Introduction -- 7.2. Green Synthesis of Nanoparticles -- 7.3. Nanoemulsion Synthesis -- 7.4. Methods of Preparation -- 7.4.1. High-Energy Methods -- 7.4.2. Low-Energy Approaches -- 7.5. Properties of Nanoemulsion -- 7.5.1. Transparency -- 7.5.2. Rheology -- 7.6. Application of Nanotechnology in Agriculture -- 7.6.1. Nanoparticles as Potential Plant Growth Promoters -- 7.6.2. Nanoparticles as Potential Fertilizers -- 7.6.3. Nanoparticles as Potential Nanosensors -- 7.6.4. Nanoparticles as Potential Inhibitors of Plant Pathogens -- 7.6.5. Plant-Pathogen Nanoparticle Interactions -- 7.6.6. Cellular Uptake of Nanoparticles in Plants and Their Potential Effects -- 7.6.7. Omics Approach in Studying Plant-Pathogen Nanoparticle Interactions -- 7.6.8. Transcriptomic Profiling -- 7.6.9. Proteomic Profiling -- 7.6.10. Metabolomic Profiling -- 7.7. Nanoemulsion in Agriculture -- 7.7.1. Antimicrobial Agents -- 7.7.2. Larvicidal, Pesticidal, and Herbicidal Activity -- 7.8. Conclusions and Future Prospects -- References -- Further Reading -- Chapter 8: Microbial Biotechnology: A Promising Implement for Sustainable Agriculture -- 8.1. Introduction -- 8.2. Microbial Biotechnology and Sustainable Agriculture -- 8.3. Status of Agriculture at National and International Level -- 8.4. Role of Microorganisms in Agriculture -- 8.5. Biofertilizers -- 8.6. Biopesticides -- 8.7. Virus-Based Bioinsecticides -- 8.8. Techniques Used in the Agriculture -- 8.9. Value Addition in the Food Crop -- 8.10. Advantages and Limitations -- 8.11. Conclusions and Future Prospects -- References -- Further Reading.
,
Chapter 9: Rhizospheric Microbial Diversity: An Important Component for Abiotic Stress Management in Crop Plants Toward S ... -- 9.1. Introduction -- 9.2. Environmental Stress and Their Impact on Agriculture -- 9.3. Strategies Implemented by Plants Against Abiotic Stress -- 9.4. Technical Interventions for Abiotic Stress Tolerance -- 9.4.1. Pesticides and Fertilizers -- 9.4.2. Seed Priming -- 9.4.3. Transgenic Plants -- 9.5. Microorganisms in Plant Stress Management -- 9.5.1. PGPR in Abiotic Stress Management -- 9.5.2. Secretion of Phytohormones by PGPRS -- 9.5.3. Production of Volatile Compounds -- 9.5.4. Potassium and Phosphate Solubilization -- 9.5.5. Nitrogen Fixation -- 9.5.6. Secretion of ACC Deaminase -- 9.5.7. Secretion of Antibiotics/Inhibitory Substances -- 9.6. PGPRs Usage: Status and Recommendations -- 9.7. Rhizospheric Microbial Community: Significance in Plant Stress Management -- 9.7.1. Influence of Host Plant on Rhizospheric Microbial Community -- 9.7.2. Influence of Rhizospheric Microbial Community on Host Plant Growth and Survival -- 9.7.3. Rhizospheric Microbial Community Engineering for Plant Stress Management -- 9.8. Future Directions in Rhizosphere Microbiome Engineering in Sustainable Agriculture -- 9.9. Conclusions -- References -- Further Reading -- Chapter 10: Phyllosphere Microbiome: Functional Importance in Sustainable Agriculture -- 10.1. Introduction -- 10.2. An Insight Into the World of the Microbiome -- 10.3. Types and Characteristics of Microbiomes -- 10.4. Function and Ecology of the Plant Microbiome With Special Reference to the Phyllosphere Microbiome -- 10.5. A Brief Outlook Into the Phyllosphere Microbiomes -- 10.6. Diversity and Composition of the Phyllosphere Microbiome -- 10.7. Physiological and Ecological Roles of the Phyllospheric Microbiome.
,
10.8. Interactions and Metabolic Determinants of Phyllospheric Microbiota With the Environment.
Sprache:
Englisch