UID:
almafu_9960119551002883
Umfang:
1 online resource (xxv, 353 pages) :
,
digital, PDF file(s).
ISBN:
0-511-83583-3
,
0-511-52629-6
Serie:
Cambridge tracts in mathematics ; 123
Inhalt:
The ends of a topological space are the directions in which it becomes non-compact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behaviour at infinity of a non-compact space. The second part studies tame ends in topology. Tame ends are shown to have a uniform structure, with a periodic shift map. Approximate fibrations are used to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory.
Anmerkung:
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
,
pt. 1. Topology at infinity. 1. End spaces. 2. Limits. 3. Homology at infinity. 4. Cellular homology. 5. Homology of covers. 6. Projective class and torsion. 7. Forward tameness. 8. Reverse tameness. 9. Homotopy at infinity. 10. Projective class at infinity. 11. Infinite torsion. 12. Forward tameness is a homotopy pushout -- pt. 2. Topology over the real line. 13. Infinite cyclic covers. 14. The mapping torus. 15. Geometric ribbons and bands. 16. Approximate fibrations. 17. Geometric wrapping up. 18. Geometric relaxation. 19. Homotopy theoretic twist glueing. 20. Homotopy theoretic wrapping up and relaxation -- pt. 3. The algebraic theory. 21. Polynomial extensions. 22. Algebraic bands. 23. Algebraic tameness. 24. Relaxation techniques. 25. Algebraic ribbons. 26. Algebraic twist glueing. 27. Wrapping up in algebraic K- and L-theory -- pt. 4. Appendices. Appendix A. Locally finite homology with local coefficient. Appendix B.A brief history of end spaces.
,
English
Weitere Ausg.:
ISBN 0-521-05519-9
Weitere Ausg.:
ISBN 0-521-57625-3
Sprache:
Englisch
URL:
https://doi.org/10.1017/CBO9780511526299