Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9949435855602882
    Umfang: 1 online resource (300 pages)
    ISBN: 9780128215081
    Serie: Nanophotonics
    Inhalt: 2D Materials for Electronics, Sensors and Devices: Synthesis, Characterization, Fabrication and Application provides an overview of various top-down and bottom-up synthesis techniques, along with stitching, stacking and stoichiometric control methods for different 2D materials and their heterostructures. The book focuses on the widespread applications of various 2D materials in high-performance and low-power sensors, field effect devices, flexible electronics, straintronics, spintronics, brain-inspired electronics, energy harvesting and energy storage devices. This is an important reference for materials scientists and engineers looking to gain a greater understanding on how 2D materials are being used to create a range of low cost, sustainable products and devices.
    Anmerkung: Front cover -- Half Title -- Title -- Copyright -- Contents -- Contributors -- Chapter 1 Scalable synthesis of 2D materials -- 1.1 Introduction -- 1.2 Large-area graphene synthesis -- 1.2.1 Top-down: exfoliation and wafer-scale deposition -- 1.2.2 Bottom-up synthesis -- 1.3 Large-area transition metal dichalcogenide synthesis -- 1.3.1 Film conversion -- 1.3.2 Vapor-phase deposition methods -- 1.4 Large-area hexagonal boron nitride synthesis -- 1.4.1 Chemical vapor deposition -- 1.4.2 Molecular beam epitaxy -- Conclusion -- Acknowledgement -- References -- Chapter 2 Synthesis of 2D heterostructures -- 2.1 Introduction -- 2.2 Direct synthesis methods for 2D heterostructures -- 2.2.1 CVD methods and the effect of different precursors -- 2.3 Synthesis of multijunction heterostructures -- 2.3.1 Using the CVD Process -- 2.3.2 MOCVD process -- 2.3.3 Molecular Beam Epitaxy -- 2.4 Vertical heterostructure -- 2.4.1 Graphene and hBN -- 2.4.2 Graphene with TMDs -- 2.4.3 TMD/TMD heterostructures -- 2.4.4 Janus vertical and lateral heterostructure -- 2.5 Phase engineering in lateral heterostructures -- 2.5.1 Phase-selective synthesis -- 2.5.2 Phase transition -- Conclusion -- References -- Chapter 3 Characterization of 2D transition metal dichalcogenides -- 3.1 Introduction -- 3.2 Raman spectroscopy of 2D materials -- 3.3 Raman scattering in TMDs -- 3.3.1 Identifying the number of layers -- 3.3.2 Identifying defects and doping -- 3.3.3 Identifying stacking order in TMDs -- 3.3.4 Measuring interlayer coupling in 2D van der Waals heterostructures (vdWHs) -- 3.3.5 Identifying TMD-based alloys -- 3.3.6 Identifying phase transition -- 3.3.7 Identifying the strain -- 3.4 Photoluminescence spectroscopy -- 3.5 PL in 2D TMDs -- 3.5.1 Identifying the number of layers -- 3.5.2 Identifying defects -- 3.5.3 Identifying doping -- 3.5.4 Identifying strain. , 3.5.5 Effect of temperature -- 3.5.6 Effect of substrate -- 3.6 Atomic force microscopy and Kelvin probe force microscopy -- 3.6.1 Working principle -- 3.6.2 Different modes of AFM -- 3.6.3 Role of AFM and its electrical modes in probing 2D materials and their heterojunctions -- 3.7 Transmission electron microscope -- 3.7.1 Identifying the phase transition of 2D materials -- 3.7.2 Identifying defects -- 3.7.3 Identifying structural changes -- 3.8 X-ray photoelectron spectroscopy -- 3.8.1 Principle and elemental analysis -- 3.8.2 Identifying phases of TMDs -- 3.8.3 Effect of doping -- 3.9 Conclusion -- References -- Further reading -- Chapter 4 2D heterostructures for advanced logic and memory devices -- 4.1 Background -- 4.1.1 Overview of 2D materials -- 4.1.2 2D van der Waals materials for transistors -- 4.1.3 Top gate and bottom gate FETs -- 4.1.4 Short-channel effects -- 4.1.5 Heterointegration -- 4.2 Tunable junction diodes and tunneling transistors -- 4.2.1 2D homojunctions -- 4.2.2 2D heterojunctions -- 4.2.3 2D material-based tunneling devices -- 4.2.4 Transistor scaling and low-power devices -- 4.3 Transistor memories and memristive devices -- 4.3.1 Floating gate memories -- 4.3.2 Ferroelectric memory devices -- 4.3.3 Memristive devices -- 4.3.4 Resistive switching mechanism in memristive devices -- 4.3.5 Lateral and vertical memristive devices from 2D materials -- 4.3.6 Memristive devices from 2D-MoS2 -- 4.3.7 Memristive devices based on insulating hBN -- 4.4 Conclusions and outlook -- References -- Chapter 5 2D materials for flexible electronics -- 5.1 Introduction -- 5.2 Fabrication techniques -- 5.2.1 Mechanical exfoliation -- 5.2.2 Chemical exfoliation -- 5.2.3 CVD synthesis -- 5.2.4 Growth of novel heterostructures -- 5.2.5 Patterned growth -- 5.2.6 Direct growth on polymeric supporting substrates -- 5.2.7 Transfer method. , 5.3 Flexible devices for various applications -- 5.3.1 Flexible transistors -- 5.3.2 Flexible sensors -- 5.3.3 Flexible energy storage devices: batteries and supercapacitors -- 5.4 Conclusions and future outlook -- References -- Chapter 6 2D materials for optoelectronics -- 6.1 Introduction -- 6.2 Background and overview -- 6.2.1 Device architectures and operating mechanisms -- 6.2.2 Measurements and benchmarking -- 6.3 Devices and applications -- 6.3.1 Photodetectors -- 6.3.2 Photovoltaics -- 6.3.3 Light emission -- 6.3.4 Flexible devices -- 6.3.5 Photonic devices -- 6.4 New application horizons -- 6.4.1 Tunable and reconfigurable devices -- 6.4.2 Optical memories -- 6.4.3 Straintronics -- 6.4.4 Superlattices -- 6.4.5 Neuromorphic applications -- 6.5 Conclusions -- 6.5.1 Gaps and challenges -- 6.5.2 Outlook -- References -- Chapter 7 2D materials for neuromorphic devices -- 7.1 Introduction -- 7.2 2D synapses: two-terminal memristor -- 7.2.1 Metal ion migration -- 7.2.2 Vacancy migration -- 7.2.3 Phase change mechanism -- 7.3 Two-dimensional synapses: three-terminal transistor -- 7.3.1 Charge trapping/detrapping -- 7.3.2 Ionic gating for synaptic devices -- 7.3.3 Tunneling effect -- 7.3.4 Multigate synergistic effect -- 7.3.5 Anisotropy -- 7.4 2D Materials vdW heterostructures -- 7.5 Conclusions and outlook -- References -- Index -- Back cover.
    Weitere Ausg.: Print version: Das, Saptarshi 2D Materials for Electronics, Sensors and Devices San Diego : Elsevier,c2022 ISBN 9780128215050
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz