Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg : Springer Berlin Heidelberg
    UID:
    b3kat_BV046871666
    Umfang: 1 Online-Ressource (IV, 318 p. 8 illus)
    Ausgabe: 1st ed. 1976
    ISBN: 9783642463297
    Serie: Lecture Notes in Economics and Mathematical Systems 117
    Inhalt: The variable metric algorithm is widely recognised as one of the most efficient ways of solving the following problem:- Locate x* a local minimum point n ( 1) of f(x) x E R Considerable attention has been given to the study of the convergence prop- ties of this algorithm especially for the case where analytic expressions are avai- ble for the derivatives g. = af/ax. i 1 ••• n • (2) ~ ~ In particular we shall mention the results of Wolfe (1969) and Powell (1972), (1975). Wolfe established general conditions under which a descent algorithm will converge to a stationary point and Powell showed that two particular very efficient algorithms that cannot be shown to satisfy \,olfe's conditions do in fact converge to the minimum of convex functions under certain conditions. These results will be st- ed more completely in Section 2. In most practical problems analytic expressions for the gradient vector g (Equ. 2) are not available and numerical derivatives are subject to truncation error. In Section 3 we shall consider the effects of these errors on Wolfe's convergent prop- ties and will discuss possible modifications of the algorithms to make them reliable in these circumstances. The effects of rounding error are considered in Section 4, whilst in Section 5 these thoughts are extended to include the case of on-line fu- tion minimisation where each function evaluation is subject to random noise
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783540076162
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783642463303
    Sprache: Englisch
    Fachgebiete: Wirtschaftswissenschaften , Mathematik
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Operations Research ; Optimierung ; Konferenzschrift
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz